Altın Oran (1,618033.... )

Etiketler :
Altın orana ilişkin matematik bilgisi ilk kez İ.Ö. 3. Yüzyılda Öklid’in Stoikheia ("Öğeler") adlı yapıtında "aşıt ve ortalama oran" adıyla kayda geçirilmiştir. Eldeki veriler,bu bilginin geçmişinin aslında Eski Mısır’da İ.Ö. 3000 yılına kadar dayandığını göstermektedir. Grek dünyasına da Pythagoras ve Pythagoras’cular tarafından tanıtıldığı ileri sürülür.Altın oran, (Fi) sayısı olarak bilinir. Bu sayı, Eski Yunan düşünürleri tarafından bulunmuştur, ancak Fi sayısını kimin tanımladığı kesin olarak belli değildir.

Eski Yunan düşünürlerinin bazılarının, Fi sayısının yerine (to) sayısını kullandıkları da bilinmektedir.İ.Ö. 500’lü yıllarda yaşamış olan tüm zamanların en büyük matematikçilerinden biri olan Pisagor , altın oranla ilgili aşağıdaki düşüncelerini dile getirmiştir:Bir insanın tüm vücudu ile göbeğine kadar olan yüksekliğinin oranı, bir pentagramın uzun ve kısa kenarlarının oranı, bir dikdörtgenin uzun ve kısa kenarlarının oranı, hepsi aynıdır. Bunun sebebi nedir? Çünkü tüm parçanın büyük parçaya oranı, büyük parçanın küçük parçaya oranına eşittir.Altın oran, günlük yaşantımızda, matematiğin estetik güzelliğe etki ettiği her alanda karşımıza çıkan bir kavramdır. Altın oranın çok çeşitli tanımları verilebilir ama altın oran, neticede matematiksel bir kavramdır ve değeri de 1,618033.... olarak devam eden ondalık bir sayıdır.

Altın oranın matematiksel anlamına geçmeden önce altın oranın karşımıza çıktığı bazı alanlara değinelim.Altın oran, örneğin bir dikdörtgenin göze en estetik gözükmesi için uzun kenarı ile kısa kenarı arasındaki orandır. Buna benzer olarak, bir doğru parçasının ikiye ayrıldığında göze en hoş gelen ikiye ayrılma oranıdır. Altın oran, sadece dikdörtgen ve doğru için değil, neredeyse tüm geometrik cisimler ve yapılar için kullanılabilir.Altın oranın matematiksel açıdan basit bir tanımı şu şekilde yapılabilir:Altın oran, 1 sayısına eklendiğinde kendi karesine eşit olan iki sayıdan biridir. Altın oran 1,618033.... olarak devam eden ondalık sayıdır. 1 sayısına eklendiğinde kendi karesine eşit olan diğer sayı da - 0,618033... olarak devam eden ondalık sayıdır.

0 yorum:

Popüler Yayınlar

Sosyal Paylaşım

Icon Icon Icon Icon

Lütfen yazılarımızla ilgili yorum yapmaktan çekinmeyin. Kırık linkleri ve hatalı içerikleri mutlaka bize ilgili sayfa altında yorum yaparak bildiriniz. Blog sayfalarımızda ilginizi çekebilecek diğer yazılar için blog arşivimizi kullanabilirsiniz.

Son Yorumlar

Yararlı Linkler