Doğrusal Denklem Sistemleri (Matrislerle Çözüm)

Etiketler :
Daha önceki konumuzda doğrusal denklem sistemlerinin çözümünü elemanter satır ve sütun işlemleri yardımıyla yapmıştık. (Bkz. http://muallims.blogspot.com.tr/2015/11/dogrusal-denklem-sistemleri.html ) Buradaki sayfamızda verilen herhangi bir doğrusal denklemin gerekli şartları sağlamasıyla genişletilmiş katsayılar matrisinin tersi ile  denklem sisteminin genel çözümünü yapacağız.
 (x1 , x2 , . . . , xn ) sıralı n-lisinin lineer denklem sistemin bir çözümü olması için gerek ve yeter şart, bu sayıların oluşturduğu X matrisinin AX = B matris denklemini sağlamasıdır. A matrisine sistemin katsayılar matrisi denir. Sistemin ilaveli (genişletilmiş) matrisinin katsayılar matrisi ile sağ taraf sabitleri matrisinin yan yana getirilmesiyle elde edildiğine dikkât ediniz. 
Denklem sayısı değişken sayısına eşit olan bir doğrusal denklem sisteminin katsayılar matrisi bir kare matristir. Böyle bir sistemin bir ve yalnız bir çözümü olması için gerek ve yeter şart, sistemin ilaveli matrisinin indirgenmiş biçimindeki sütun sayısının sıfırdan farklı satır sayısından bir fazla olması, yani hiç sıfır satırı bulunmamasıdır ki, bu, sistemin katsayılar matrisinin indirgenmiş biçiminin birim matris olmasına denktir. Bu durum katsayılar matrisinin tersinin var olmasına da denktir ve çözümün bulunmasında ters matristen yararlanılabilir. 

1 yorum:

Popüler Yayınlar

Sosyal Paylaşım

Icon Icon Icon Icon

Lütfen yazılarımızla ilgili yorum yapmaktan çekinmeyin. Kırık linkleri ve hatalı içerikleri mutlaka bize ilgili sayfa altında yorum yaparak bildiriniz. Blog sayfalarımızda ilginizi çekebilecek diğer yazılar için blog arşivimizi kullanabilirsiniz.

Son Yorumlar

Yararlı Linkler