İkinci Derece Denklemin Çarpanları ve Diskriminant

Etiketler :
ax2+bx+c=0  biçimindeki denkleme ikinci dereceden bir bilinmeyenli denklem denir. Burada a, b, c sayılarına denklemin katsayıları, c ye ise sabit terim denir. Bu denklemi sağlayan x gerçek sayı değerleri varsa bunlara denklemin kökleri, köklerin kümesine de denklemin gerçek sayılar (reel sayılardaki) kümesindeki çözüm kümesi denir. Bu denklemin kökleri bulunurken arpanlarına ayrılabiliyorsa denklem çarpanlarına ayrılır. Ve herbir çarpan tek tek 0'a eşitlenerek kökler bulunur. Çarpanlarına kolay yoldan ayrılamayan ikinci derece denklemlerde ise kök formülü kullanılar kökler bulunur. ikinci dereceden bir bilinmeyenli bir denklemin iki farklı gerçek kökü olabileceği gibi bazen bir gerçek kökü olabilir, bazen de hiç gerçek kökü olmayabilir. Bu kök formülünde diskiriminant'a göre kökler reel veya karmaşık olarak karşımıza çıkar. Her iki durumda da aynı kök formülü kullanılarak çözüm kümeleri elde edilir.Rasyonel katsayılı ikinci dereceden bir bilinmeyenli bir denklemin kökleri de birbirinin eşleniği şeklindedir.

Kök formülünün nasıl ortaya çıktığını ispatlayalım.  Burada diskriminant'ın üç durumuna göre denklemin köklerinin farklılaştığı görülebilir.

0 yorum:

Popüler Yayınlar

Sosyal Paylaşım

Icon Icon Icon Icon

Lütfen yazılarımızla ilgili yorum yapmaktan çekinmeyin. Kırık linkleri ve hatalı içerikleri mutlaka bize ilgili sayfa altında yorum yaparak bildiriniz. Blog sayfalarımızda ilginizi çekebilecek diğer yazılar için blog arşivimizi kullanabilirsiniz.

Son Yorumlar

Yararlı Linkler