Ders Anlatım Föyü-Eşkenar Üçgen

Özel Üçgenler-"Eşkenar Üçgen" konusu örnek ders anlatım föyü çeşitli ders kitaplarından yararlanılarak hazırlanmış olup, azami iki ders saati içersinde bitirilecek şekilde uygulanmalıdır.

Öğretmenlere ders anlatımında yararlı olması amacıyla kullanıma sunulmuştur. Başka bir amaç için kullanılamaz.PDF formatında olduğu için akıllı tahtaya uyumludur. PDF okuyucunun olduğu her ortamda tablette, mobil cihazlarda çalışabilmektedir.   

Ders Anlatım Föyü-İkizkenar Üçgen

Özel Üçgenler-"İkizkenar Üçgen" konusu örnek ders anlatım föyü çeşitli ders kitaplarından yararlanılarak hazırlanmış olup, azami iki ders saati içersinde bitirilecek şekilde uygulanmalıdır.

Öğretmenlere ders anlatımında yararlı olması amacıyla kullanıma sunulmuştur. Başka bir amaç için kullanılamaz.PDF formatında olduğu için akıllı tahtaya uyumludur. PDF okuyucunun olduğu her ortamda tablette, mobil cihazlarda çalışabilmektedir.   

Ders Anlatım Föyleri-Dik Üçgen

Özel Üçgenler-"Dik Üçgen" konusu örnek ders anlatım föyü çeşitli ders kitaplarından yararlanılarak hazırlanmış olup, azami iki ders saati içersinde bitirilecek şekilde uygulanmalıdır.

Öğretmenlere ders anlatımında yararlı olması amacıyla kullanıma sunulmuştur. Başka bir amaç için kullanılamaz.PDF formatında olduğu için akıllı tahtaya uyumludur. PDF okuyucunun olduğu her ortamda tablette, mobil cihazlarda çalışabilmektedir. 

Ders Anlatım Föyleri-Üçgende Kenarortay

Üçgende "kenarortay" konusu örnek ders anlatım föyü çeşitli ders kitaplarından yararlanılarak hazırlanmış olup, azami iki ders saati içersinde bitirilecek şekilde uygulanmalıdır.

Öğretmenlere ders anlatımında yararlı olması amacıyla kullanıma sunulmuştur. Başka bir amaç için kullanılamaz.PDF formatında olduğu için akıllı tahtaya uyumludur. PDF okuyucunun olduğu her ortamda tablette, mobil cihazlarda çalışabilmektedir. 

Erken Yaşta Müzik Eğitimi ve Matematik

"İzmir Üniversitesi Çocuk Gelişimi Bölümü Öğretim Üyesi Yrd. Doç. Dr. Elif Öztürk Yılmaztekin, müziğin çocuk gelişimi üzerinde büyük olumlu etkiye sahip olduğunu, enstrüman çalan çocukların matematik ve fen kavramlarını öğrenmeye daha hazır olduğunu söyledi.
İzmir Üniversitesi Çocuk Gelişimi Bölümü Öğretim Üyesi Yrd. Doç. Dr. Elif Öztürk Yılmaztekin, müziğin, çocuğun tüm zihinsel, sosyal, duygusal, fiziksel ve psikolojik gelişim alanlarını destekleyen bir sanat dalı olduğunu söyledi. Yapılan bazı çalışmaların, bu gelişimi ortaya koyduğunu dile getiren Öztürk, sözlerini şöyle sürdürdü:
“Araştırmalar sonucu, piyano çalan çocukların matematik ve fen kavramlarını öğrenmeye daha hazır oldukları ortaya çıkmıştır. Nedeni ise, zihinsel imgelemeyi desteklemesi ve notaları kullanarak ortaya müziğin çıkarılmasında ortak becerilerin kullanılmasıdır. Diğer bir çalışmada ise, çocukların 9 haftalık piyano veya keman eğitiminden sonra bu eğitimi almayan çocuklara oranla IQ puanlarında yaklaşık 3 puan artış olduğu tespit edilmiştir.”
Küçük yaşlardaki çocuklar için şarkı esnasında ritim tutma ve olduğu yerde sallanmaya başlama, zıplamanın, çocuğun odaklandığı ve dinlediği müziği anlamaya başladığının göstergesi olduğunu ifade eden Yılmaztekin, daha büyük yaşlardaki çocuklar için, müziği dinlemenin, dinlediği müziği hatırlamanın, müzikte geçen konuyu anlama ve neden-sonuç ilişkisi kurmanın çocuğun zihinsel gelişimine olumlu katkıda bulunduğunu söyledi.

Noktanın Doğruya Uzaklığı

Bir noktanın doğruya olan en kısa uzaklığı dik olan uzaklıktır. Bu uzaklık da aşağıda gösterildiği şekilde noktanın doğruya uzaklık formülü yardımıyla bulunur.
 

Bir Doğru Parçasını İçten/Dıştan Bölen Nokta

Bir doğru parçasını belli bir oranda içten veya dıştan noktanın koordinatları bulunurken o noktalar arasındaki artış miktarından yola çıkarak verilen orana göre, istenen noktanın koordinatları bulunur.

Noktanın bir doğru parçasını içten veya dıştan bölecek şekilde olması aynı kurala dayanır. İki durumda da benzerlik teoreminden yararlanılarak oluşacak üçgenler arasındaki thales bağıntılarından yola çıkılarak ispat yapılır. Burada elde edilen formülün kullanılması zorunlu olmadığı gibi bazı durumlarda kat hesabı yapmaktan daha zor kullanıma sahip olacaktır. En iyi metot verilen orana göre katları yazdıktan sonra koordinatlar arasındaki farklardan yola çıkarak istenen koordinatın bulunması olacaktır.

Formülü kullanmaktan ziyade aşağıda belirtildiği şekilde 2.yolu kullanmak, çok daha kullanışlı ve güzel bir yöntem olacaktır.

İçten bölen nokta tam olarak doğru parçasını iki eşit parçaya ayırırsa o zaman bu nokta orta nokta olmuş olur ki bunun koordinatlarını bulmak daha kolay hale gelir. Sınır koordinatlarının toplamının yarısı orta noktanın koordinatlarını verir.
Paralelkenar dikdörtgen ve kare gibi şekillerin köşe koordinatları bulunurken de aynı mantıkla hareket edilir. Bu dörtgenlerin köşegenlerinin kesim noktası orta nokta olduğundan yukarıdaki örnekten yararlanarak; orta noktanın koordinatlarının bulunmasından hareketle, paralelkenar ve dikdörtgenlerin de köşe koordinatları bulunabilir. 

Aşağıdaki örnekleri kendiniz çözerek konuyu daha iyi pekiştirebilirsiniz. Cevapları yanlarında verilmiştir. (Doğru parçasının belli bir oranda bölen noktanın koordinatları)
Aşağıdaki örnekleri kendiniz çözerek konuyu daha iyi pekiştirebilirsiniz. Cevapları yanlarında verilmiştir. (Dörtgenlerin köşe noktalarının koordinatlarının bulunması)



İki Nokta Arası Uzaklık ve İspatı

Analitik düzlemde iki nokta arasıuzaklık hesaplaması yapılırken iki noktanıneksenlerde belirlediği  yerlerin arasındaki değişim miktarı dikkate alınır ve buna göre pisagor teoreminden uzaklık bulunur. Yani iki farklı noktanın ordinat bileşenleri farkının karesi ile apsis bileşenlerinin farkının karesi alınıp toplandıktan sonra pisagor teoremi gereği karekökü alınarak iki nokta arasındaki uzaklık bulunumuş olur.