İskenderiyeli Menelaus (MS.70 – 140), matematikçi ve gökbilimcidir. Yaşamı hakkında çok az bilgi bulunan Menelaus'un hayatını İskenderiye'de geçirdiği çocukluk yıllarının ardından Roma'ya taşındığı tahmin edilmektedir. İskenderiyeli Pappus ve Proclus tarafından İskenderiyeli Menelaus adıyla anılmıştır. Batlamyus, Almagest adlı eserinde, Menelaus'un 98 yılının ocak ayında iki gökbilimsel gözlem yaptığını belirtmiştir. Bunlar birkaç gece arayla gerçekleşen Spica ve Beta Scorpii okültasyonlarıdır. Batlamyus bu gözlemlerden ekinoks döngülerini doğrulamada yararlanmıştır.
Sphaerica’nın Arapça çevirisi Menelaus'un günümüze kalan tek yapıtıdır. Üç kitaptan oluşan bu çalışma, kürenin geometrisi ve gökbilimsel hesaplamalarda kullanımını konu almaktadır. Kitap, küresel üçgen kavramına giriş yapmakta ve Menelaus teoreminin kanıtına yer vermektedir. Bu çalışma 16. yüzyılda gökbilimci ve matematikçi Francesco Maurolico tarafından Yunancaya çevrilmiştir. 16.71 ° kuzey,
15.81 ° güney, 16.4 ° Doğu ve 15.46° Batı dereceli, Ay yüzeyinde yer alan yaklaşık 27 km çapındaki bir kratere "Menelaus krateri", adı verilmiştir.
Menelaus tarafından yazılan kitapların bir bölümü şöyledir:
Altı kitaptan oluşan Bir çemberdeki kirişlerin hesaplanması üzerine (On the calculation of the chords in a circle)
Üç kitaptan oluşan Geometrinin temelleri (Elements of geometry), daha sonra Sabit b. Kurra tarafından düzenlenmiştir.
Farklı cisimlerin ağırlık ve dağılımları üzerine (On the knowledge of the weights and distributions of different bodies)
Menelaus, Matematik dünyasında daha çok üçgenlerde benzerlik uygulamasının bir sonucu olarak bulanabilen "Meneleaus Teoremi" ile bilinir. Meneleaus Teoremi: Verilen bir üçgende üçgenin kenarlarından birinin uzantısı üzerinden alınan rastgele bir noktadan, karşı kenara çizilen doğrunun kestiği noktaların yardımıyla oluşan doğru parçaları arasında uygulanabilir.
Menelaus teoreminin uygulanışı ile ilgili bir örnek soru ve ardından bir olimpiyat sorusu ile teoremin işleyişini görelim.
Dikkat edilirse sorularda sözel bir dille aktarım yapıldıktan sonra şeklin çizimi ve yorumlanması öğrenciye bırakılmıştır. bu nedenle bu tür olimpiyat sorularının çözümünde öncelikle şeklin doğru çizilmesi ve buna göre uygun yorumlama yapıldıktan sonra bilinen teoremin soruya uyarlanması gereklidir.
Çok teşekkür ederim çok yardımcı oldunuz.
YanıtlaSilİyi çalışmalar, kolay gelsin.
Sil