Matrisin minörü ve kofaktörü

Matrisin minörü, bir matrisin her bir elemanının çıkarıldığı minör matrisi oluşturan işlemdir. Yani, bir matrisin herhangi bir satır ve herhangi bir sütunundan çıkarılan elemanlardan oluşan yeni bir matristir. Ana matristen bir sütun ve bir satır çıkartılarak elde edilen altmatrise kısa o mattidin minörü denir. Örneğin, 3x3'lük bir matrisin minörü, 2x2'lik bir altmatristir ve başlangıç matrisinden bir satır ve bir sütun çıkarılarak elde edilir. Hangi satır ve sütunun çıkarıldığı minörde indis biçiminde yazılarak gösterilir. Matrisin minörü, ana matrisin bir altkümesini temsil eder ve genellikle determinant ve ters matris hesaplamalarında kullanılır. Matrisin minörü, matrisin belirli bir elemanını dahil etmeyen kısmını ifade eder. Bu işlem, matris hesaplamalarında önemli bir rol oynar.Matris minörleri genellikle determinan hesaplamalarında ve lineer cebir problemlerinde kullanılır.

Bir matrisin minörü; genellikle o matrisin determinantını bulmak için kullanılır. Bir matrisin belirli bir minörünün determinantı, bu minör matrisin sütunları ve satırları üzerinden hesaplanarak belirlenebilir. Minörü bulmak, matrisin determinantını hesaplarken kritik bir rol oynar.

Kofaktör matrisi; bir matrisin her elemanının kofaktörlerini içeren matristir. Ana matrisin her elemanının kofaktörü, o elemanın bulunduğu satır ve sütun çıkarıldıktan sonra kalan determinantın değeridir. Kofaktör matrisi, bir kare matrisin her bir elemanının kofaktörlerden oluşan bir matristir. Kofaktör, bir matrisin her bir elemanı için oluşturulan yardımcı bir matristir ve genellikle matrisin determinantını hesaplamakta kullanılır. Bir matrisin kofaktör matrisi genellikle şu adımlarla bulunur: 

1. Her bir elemana ait, satır ve sütunlar çıkarılarak minör matrisi bulun. 

2. Minör matrislerin determinantını  hesaplayın. 

3. Hesaplanan determinanta göre her bir elemanın ayrı ayrı kofaktörünü pozitif veya negatif olarak belirleyin. Kofaktör, determinantın pozitif veya negatif olması, elemanın bulunduğu satır ve sütunun toplam değerine bağlı olarak belirlenir. 

4. Satır ve sütun değerleri toplamı tek ise negatif, çift ise pozitif olur. Örneğin 2.satır 3.sütun elemanın kofaktörünü belirlerken (2+3=5 tek olduğundan) negatif işaret alınır. 

5. Bütün bu hesaplamalardan sonra kofaktör matrisi elde edilir.

Kofaktör matrisi genellikle transpoze edilince adjoint matrisi elde edilir. Adjoint matrisi, matrisin tersini bulmada kullanılır.

Hiç yorum yok:

Yorum Gönder

Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."

İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...