Asıl adı Guillaume François Antoine, Marquis de L'Hôspital (d. 1661 Paris – ö. 2 Şubat 1704 Paris) Fransız matematikçidir. En çok tanınmasına sebep olan çalışması kendi adıyla anılan bir rasyonel (kesirli) bir fonksiyonda pay ve paydanın limitlerinin değeri sıfır veya sonsuz olması durumunda uygulanan bir formüldür.
Asil bir aileden gelmesi sebebiyle ilk olarak bir süvari alayında yüzbaşı rütbesi ile görev yaptı. Ancak gözlerinin ileri derecede bozuk olması ve matematiğe olan yoğun ilgisi ve yeteneği sonucu askerliği bırakarak tamamen matematiğe yöneldi.
Dönemin ünlü matematikçilerinden Johann Bernoulli'nin yönetiminde çalıştı ve amatör olarak ilgilendiği matematikte kendisini yetiştirdi. Aralarından Isaac Newton gibi pek çok önemli bilim insanının çözmek için uğraştığı Brachystochrone adı verilen problemi çözdü. 1693 yılında Paris Bilimler Akademisi'ne onursal üye olarak seçildi.
En ünlü eseri 1692 yılında yazdığı ve 1696'da yayımlanan "Analyse des infiniment petits pour l'intelligence des lignes courbes" dir. Bu kitap diferansiyel analiz üzerine yazılmış ilk ders kitabıdır.
L'Hopital Kuralı olarak bilinen yöntemi de ilk kez bu kitapta açıklamıştır.
Ancak daha sonra pek çok çalışmasının sonradan Bernaulli'ye ait olduğu ortaya çıkmıştır. Buna göre 1694 yılında Bernoulli ile bir anlaşma yaptı. Bu anlaşmaya göre l'Hôpital Bernoulli'ye her yıl 300 Frank ödemiş ve çalışmalarından ve keşiflerinden bilgi sahibi olmuş, daha sonra bunu kendi yazdığı kitaplarda kullanmıştır. 1704'de, l'Hôpital'in ölümünden sonra, Bernoulli bu anlaşmayı açıkladı ve L'Hôpital'in kitaplarındaki pek çok sonucun aslında kendine ait olduğunu iddia etti. 1922 yılında çıkan metinler Bernoulli'nin haklı olduğunu çıkarmıştır.
Basılmış eserleri
Analyse des infiniment petits pour l'intélligence des lignes courbes (Paris, 1696)
Traité analytique des sections coniques (Paris, 1707)
Recueil de l'académie des sciences (Paris, 1699-1701)
Acta eruditorum (Leipzig, 1693-1699)
L'Hopital Kuralı Matematiksel analizde, L'Hôspital kuralı, (okunuşu: Lopital) bir fonksiyonun limitini türevle almak için yapılan bir formüldür. Limitinin 0/0 olması durumunda pay ve paydanın türevinin alınması kuralına denir. Bu yönteme L'Hospital ismi; 17. yüzyıl Fransız matematikçi Guillaume de l'Hôpital'ın, 1696 yılında yayımladığı "l'Analyse des Infiniment Petits pour l'Intelligence des Lignes Courbes" adlı kitabında açıklaması sonucu verilmiştir. Ancak yöntemin aslında Johann Bernoulli tarafından bulunduğu kabul edilmektedir. Limitinin 0/0 veya ∞/∞ olması durumunda pay ve paydanın türevinin ayrı ayrı alınması kuralına denir. Belirsizlik durumu ortadan kalkıncaya kadar türev almaya devam edilmesiyle, limitteki belirsizlik durumunun kaldırılması işleminden ibaret önemli bir türev kuralıdır. (Ayrıntılı bilgi için Bkz. L-Hospital Kuralı)
Hiç yorum yok:
Yorum Gönder
Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."
İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...