Elipsin çevresi ve ispatı

Bir koninin bir düzlem tarafından kesilmesi ile elde edilen düzlemsel, ikinci dereceden, kapalı eğridir.Elips, bir düzlemde verilen iki noktaya odak noktası (F1, F2) uzaklıkları toplamı sâbit olan noktaların geometrik yeridir; verilen bu iki noktaya F1 ve F2 noktaları elipsin odakları denir. Odaklarının arasındaki uzunluğa 2c dersek ortadaki nokta elipsin merkez noktasıdır. Elipsin x ekseni üzerinde kalan F1 ve F2 noktaları arasındaki uzaklığa orijine eşit olacak biçimde a+a=2a asal eksen, y ekseni üzerinde kalan aynı şekildeki b+b=2b uzunluğuna ise yedek ekseni denir. Aynı zamanda pisagor teoremi gereği burada oluşan dik üçgenden b² + c² = a² bağıntısı bulunur. b ve F1 ile merkez arasındaki doğru parçası, yani c dik kenarlar, a ise hipotenüs´dür.Elipsin 2a büyüklüğünde büyük (büyük ekseni) ve 2b büyüklüğünde küçük ekseni mevcuttur. Elips bunları çap kabul eden küçük ve büyük çemberleri arasında kalır.

Elipsin çevresi yerleşik bilgilere göre Π(a+b) şeklinde verilse de elipsin çevresi ve alanı integral yardımıyla en düzgün biçimde hesaplanır.

2 yorum:

  1. X=asint ve y=bcost elipsin parametrik denklemi kullanılarak yapılırsa çözüm daha kolay olur sanırım.

    YanıtlaSil
  2. Hocam iyi güzel de bu ortaya çıkan integral nasıl hesaplanacak? Bildiğim kadarıyla bu integralin henüz bir çözümü bulunmuş değil. Ayrıca bu en sonuncusu integrali alınabilir bir fonksiyon mu açıklayabilir misiniz?

    YanıtlaSil

Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."

İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...