Tony Crilly, Bilmeniz gereken 50 Matematik Fikri

Sıfırı kim keşfetti? Neden dakikada 60 saniye var? Sonsuz ne kadar büyük? Birbirine paralel çizgiler nerede kesişirler? Ve bir kelebeğin kanat çırpışı gerçekten de dünyanın diğer ucunda fırtınaya sebep olabilir mi? Artık okuldayken matematikte ne kadar kötü olduğunuzdan matah bir şeymiş gibi bahsetmekten sıkıldıysanız, Gerçekten Bilmeniz Gereken 50 Matematik Fikri büyüleyici bir evrene giriş için harika bir fırsat.
Profesör Tony Crilly, Roma rakamlarından Fermat teoremine; Oyun kuramından sihirli karelere uzanıyor; sudoku, şifre kırma,piyango ya da birleşik faiz hesabının arkasındaki temel mantığı anlatıyor; kalkülüs, istatistik ve cebirin olur da istersek gerçek hayatta nasıl işimize yarayabildiğini ortaya koyuyor. Matematik bundan daha keyifli olmamıştı... 

Gerçekten Bilmeniz gereken 50 Matematik Fikri 
Tony Crilly
DOMİNGO YAYINEVİ
çev. Cem DURAN

Serhan Küpeli, 100 Yılın Matematik Olimpiyatları

Ulusal ve Uluslararası Matematik Olimpiyat Sınavlarına Hazırlananlar İçin 1800'lü yıllarda Avusturya-Macaristan İmparatorluğu'nda yapıldığı bilinen Matematik Olimpiyatları, özellikle II. Dünya Savaşı'nın ardından yaygınlaşarak, bugünkü olimpiyat kültürünü oluşturmuştur. Ülkemizde de Tübitak-Bilim Adamı Yetiştirme Grubunca her yıl Matematik, Fizik, Kimya, Biyoloji ve Bilgisayar dallarında ULUSAL BİLİM OLİMPİYATLARI yapılmaktadır. Geçmişten günümüze geometri mirasını incelediğimizde; olimpiyatlarda sorulan bazı problemlerin, bir süre sonra farklı ülkelerde de sorulabildiğini görmekteyiz. "Bu soruların ülkemizde de yayımlanması gerekir." düşüncesiyle bu kitabı hazırlamaya karar verdik. "Olimpiyat soruları çok zordur; çözemeyiz.'' şeklindeki ön yargıların olması ise yadsınamaz bir gerçektir. Hâlbuki bu sorular ilköğretim ve ortaöğretim müfredatında yer alan geometri konularıyla yakından ilişkilidir. Bu bağlamda, olimpiyat sorularıyla ilköğretim ve ortaöğretimde işlenen konular arasında köprü vazifesi görecek bir çalışmaya ihtiyaç olduğu görülmüştür. Bu çalışmayı yaparken, eklemeli bir bilim olan geometriye ait konuları, birbirini tamamlayan yapboz parçaları şeklinde sunmalıyız ki bu konular daha anlaşılır ve daha zevkli bir hale gelsin. İşte bu düşüncelerle, kendine özgü bir konu sıralamasıyla, üçgenin iç açılar toplamı 180° den başlayarak; Menelaus Teoremi, Euler Doğrusu, Dokuz Nokta Çemberi, Ptolemy Teoremi, Van Aubel Teoremi gibi konuları da içeren bir geometri serüveni hazırladık. Bu serüvende konu anlatımını 100 YILIN OLİMPİYAT SORULARI' yla süsledik. 

100 YILIN OLİMPİYAT SORULARI

Tori Large, Şekilli Matematik Sözlüğü

Matematik terimleri hakkında genel bir bilgi akışı sağlayan, özellikle ilköğretim ve başlangıç kısmı olarak ortaöğretim öğrencileri için çok daha fazla yararı olabileceğini söyleyeceğim bu kitapta, matematiksel manada doyurucu bilgilere ulaşabileceğinizi düşünüyorum. Konuları öğrenmeden önce bu tür bir kitapla kavram haritası oluşturmak terimlerin içeriği hakkında bir ön bilgi oluşturmanıza katkı sağlayacaktır.

TÜBİTAK YAYINLARI çev. Bahtiyar KURT

Matematikle ilgilenen ve matematiği seven herkesin kütüphanesinde bulunması gereken bir kitap. •Temel matematik terimleri ve kavramlarına ait 500’ün üzerinde tanım •300’ün üzerinde şekil ve diyagram •100’den fazla çözümlü örnek •Her sayfada, kullanılan terimler için çapraz başvurular ve ayrıntılı dizin.

Nefs ve Mücahede

Gayret sarfetmek, çabalamak, çalışmak, mânâsındaki Arapça "cehd" fiili kökünden türeyen "mücahede" "gayret etti, çabaladı" fiilinin mufāˁalaͭ vezninde  masdarı olup, mücāhada  مجاهدة " cihat etme, gayret ve çaba gösterme”, “zorluklara göğüs germe”, “düşmanla savaşma” gibi anlamlara gelir. İslamî terim olarak mü'minin Allah yolunda öncelikle dinine harb edenlerle savaşması onlarla her yoldan mücadele etmesi anlamına geldiği gibi kişinin kendi nefsinin isteklerine boyun eğmemesi için verdiği uğraş ve nefs terbiyesi anlamlarını ihtiva etmektedir. Mücahede kelimesini izah etmeden önce “nefs” kelimesinin anlamını ve mefis terbiyesi yolları hakkında kısaca malumat verelim.
Nefs kelimesi, yirmiyi aşkın anlamda kullanılmaktadır. Ruh, can, kan, benlik, iç, kalb, büyüklük, yücelik, irade gibi anlamlara gelen nefs kelimesi genel olarak iki manada kullanılır. Birinci olarak Kur'an-ı kerimde, “Her can ölümü tadacaktır. Sonunda bize döndürüleceksiniz.” (Ankebut, 57) ayetinde de belirtildiği gibi maddi beden, ceset ve maddi istek ve arzuların kaynağı manalarında kullanılmıştır. İkinci manası olarak da “…Rabbimin merhamet ettiği hariç, nefis aşırı derecede kötülüğü emreder.” (Yusuf, 53) anlamında dine uymayan Allah’ın yasakladığı her türlü isteklerin kaynağı olarak kullanılır. Nefis; insanın kendisi, özü, cismaniyeti, bedeni ve mahiyeti demektir. İnsan ruh ve beden kavramlarından oluşan şerefli bir varlıktır. Nefis, insanın bedenini simgeleyen hayvanî tarafının adıdır. Nefis; insanın yemek, içmek, çoğalmak, uyumak gibi hayvani istek ve arzularını yerine getirilmesi için yaratılmıştır. Yani nefis bu yönüyle insanın fıtrî vazifelerinin yerine getirilmesine vesile olur. Nefis, aynı zamanda her türlü şerrin kaynağı, kötülüğün temelinin de adıdır. Nefis, duyguların ve kabiliyetlerin yerleştiği bir zemindir. Bedenin manevî âlemdeki geniş bir bölümünü nefis oluşturmaktadır. Duygular, hisler nefse takılmıştır. Nefis; akıl, öfke, görme duyusu gibi kuvvelerin zemini olmuştur.
Nefis, ruhun bedende tutunma sebebidir. Nefis insanın yaşaması, hayatını sürdürebilmesi, yemesi, içmesi, çoğalıp üremesi ve nihayetinde Yaratanını bilmesi için yaratılmıştır. Ruhun bu vazifeleri yerine getirebilmesi için bir zemin gereklidir. Nefis, bu kanuna insan bedeninde manevî bir mekân teşkil etmektedir. Nefis olmadan ruh bedende tutunamaz. Yani nefis ruhun bedende devamlılığını sağlayarak bütün bu faaliyetlerin yapılmasına vesile olur.

Ahmet Doğan, Matematik ‘yaramaz’dır!

Matematik ne işe yarar?" Bu kitabın yazarının en çok sinirlendiği soru bu. Ama matematik öğretmeni olarak en fazla karşılaştığı soru da, aynı zamanda. Peki kusur, yüzlerce formülle karşı karşıya kalıp bunalan öğrenci de mi? Matematik bilgisinin ve yönteminin kendisine açacağı ufukları kavrayamayan (ya da yaşayamayan) öğrencilerin, ister istemez bu formüller yığınının gelecekte ne işlerine yarayacağını sorgulaması doğal değil mi? O halde bütün "mesele", matematiğin nasıl öğretileceği, sevdirileceği ve nasıl korkulur olmaktan çıkarılacağında... 

Ahmet Doğan, bu "meseleyi", 40 yıllık öğretmenlik yaşamı boyunca kendisine dert edenlerden. Bu kitabı üretmesinin nedeni de bu: Matematiği "öcü" olmaktan çıkarmak. Akıl yürütmenin güzelliği, estetiği, keyfi ile öğrencileri tanıştırmak.Bu nedenle, matematik öğretimi alanındaki deneyimlerini örneklerle bezeyerek sayfalara aktardığı bu kitabının başlığında da, en sık maruz kaldığı soruya yanıt veriyor. Her iki anlamıyla da:"Matematik ‘yaramaz’dır!" 

Matematik ‘yaramaz’dır! Ahmet Doğan BİLİM VE GELECEK KİTAPLIĞI

İslamda Doğruluk (Sıdk)

Doğruluk; düşüncede, sözde, niyette, iradede, azimde, vefâ ve amelde doğruluk şeklinde tezâhür eder. Öte yandan, düşünce ve eylem birliği doğruluğun esasıdır. "Doğruluk; kişinin inanç,niyet ve düşüncelerinde,işlerinde,söz , iş ve davranışlarında, hakikate adalete ve gerçeğe uygunluktur."(Hökelekli) şeklinde de tanımlanmıştır. Kur'ân-ı Kerim’de, doğruluğa dair birçok âyet-i kerime yer almaktadır. 

Ders Anlatım Föyü-Eşkenar Üçgen

Özel Üçgenler-"Eşkenar Üçgen" konusu örnek ders anlatım föyü çeşitli ders kitaplarından yararlanılarak hazırlanmış olup, azami iki ders saati içersinde bitirilecek şekilde uygulanmalıdır.

Öğretmenlere ders anlatımında yararlı olması amacıyla kullanıma sunulmuştur. Başka bir amaç için kullanılamaz.PDF formatında olduğu için akıllı tahtaya uyumludur. PDF okuyucunun olduğu her ortamda tablette, mobil cihazlarda çalışabilmektedir.   

Ders Anlatım Föyü-İkizkenar Üçgen

Özel Üçgenler-"İkizkenar Üçgen" konusu örnek ders anlatım föyü çeşitli ders kitaplarından yararlanılarak hazırlanmış olup, azami iki ders saati içersinde bitirilecek şekilde uygulanmalıdır.

Öğretmenlere ders anlatımında yararlı olması amacıyla kullanıma sunulmuştur. Başka bir amaç için kullanılamaz.PDF formatında olduğu için akıllı tahtaya uyumludur. PDF okuyucunun olduğu her ortamda tablette, mobil cihazlarda çalışabilmektedir.   

Ders Anlatım Föyleri-Dik Üçgen

Özel Üçgenler-"Dik Üçgen" konusu örnek ders anlatım föyü çeşitli ders kitaplarından yararlanılarak hazırlanmış olup, azami iki ders saati içersinde bitirilecek şekilde uygulanmalıdır.

Öğretmenlere ders anlatımında yararlı olması amacıyla kullanıma sunulmuştur. Başka bir amaç için kullanılamaz.PDF formatında olduğu için akıllı tahtaya uyumludur. PDF okuyucunun olduğu her ortamda tablette, mobil cihazlarda çalışabilmektedir. 

Ders Anlatım Föyleri-Üçgende Kenarortay

Üçgende "kenarortay" konusu örnek ders anlatım föyü çeşitli ders kitaplarından yararlanılarak hazırlanmış olup, azami iki ders saati içersinde bitirilecek şekilde uygulanmalıdır.

Öğretmenlere ders anlatımında yararlı olması amacıyla kullanıma sunulmuştur. Başka bir amaç için kullanılamaz.PDF formatında olduğu için akıllı tahtaya uyumludur. PDF okuyucunun olduğu her ortamda tablette, mobil cihazlarda çalışabilmektedir. 

Erken Yaşta Müzik Eğitimi ve Matematik

"İzmir Üniversitesi Çocuk Gelişimi Bölümü Öğretim Üyesi Yrd. Doç. Dr. Elif Öztürk Yılmaztekin, müziğin çocuk gelişimi üzerinde büyük olumlu etkiye sahip olduğunu, enstrüman çalan çocukların matematik ve fen kavramlarını öğrenmeye daha hazır olduğunu söyledi.
İzmir Üniversitesi Çocuk Gelişimi Bölümü Öğretim Üyesi Yrd. Doç. Dr. Elif Öztürk Yılmaztekin, müziğin, çocuğun tüm zihinsel, sosyal, duygusal, fiziksel ve psikolojik gelişim alanlarını destekleyen bir sanat dalı olduğunu söyledi. Yapılan bazı çalışmaların, bu gelişimi ortaya koyduğunu dile getiren Öztürk, sözlerini şöyle sürdürdü:
“Araştırmalar sonucu, piyano çalan çocukların matematik ve fen kavramlarını öğrenmeye daha hazır oldukları ortaya çıkmıştır. Nedeni ise, zihinsel imgelemeyi desteklemesi ve notaları kullanarak ortaya müziğin çıkarılmasında ortak becerilerin kullanılmasıdır. Diğer bir çalışmada ise, çocukların 9 haftalık piyano veya keman eğitiminden sonra bu eğitimi almayan çocuklara oranla IQ puanlarında yaklaşık 3 puan artış olduğu tespit edilmiştir.”
Küçük yaşlardaki çocuklar için şarkı esnasında ritim tutma ve olduğu yerde sallanmaya başlama, zıplamanın, çocuğun odaklandığı ve dinlediği müziği anlamaya başladığının göstergesi olduğunu ifade eden Yılmaztekin, daha büyük yaşlardaki çocuklar için, müziği dinlemenin, dinlediği müziği hatırlamanın, müzikte geçen konuyu anlama ve neden-sonuç ilişkisi kurmanın çocuğun zihinsel gelişimine olumlu katkıda bulunduğunu söyledi.

Noktanın Doğruya Uzaklığı

Bir noktanın doğruya olan en kısa uzaklığı dik olan uzaklıktır. Bu uzaklık da aşağıda gösterildiği şekilde noktanın doğruya uzaklık formülü yardımıyla bulunur.
 

Bir Doğru Parçasını İçten/Dıştan Bölen Nokta

Bir doğru parçasını belli bir oranda içten veya dıştan noktanın koordinatları bulunurken o noktalar arasındaki artış miktarından yola çıkarak verilen orana göre, istenen noktanın koordinatları bulunur.

Noktanın bir doğru parçasını içten veya dıştan bölecek şekilde olması aynı kurala dayanır. İki durumda da benzerlik teoreminden yararlanılarak oluşacak üçgenler arasındaki thales bağıntılarından yola çıkılarak ispat yapılır. Burada elde edilen formülün kullanılması zorunlu olmadığı gibi bazı durumlarda kat hesabı yapmaktan daha zor kullanıma sahip olacaktır. En iyi metot verilen orana göre katları yazdıktan sonra koordinatlar arasındaki farklardan yola çıkarak istenen koordinatın bulunması olacaktır.

Formülü kullanmaktan ziyade aşağıda belirtildiği şekilde 2.yolu kullanmak, çok daha kullanışlı ve güzel bir yöntem olacaktır.

İçten bölen nokta tam olarak doğru parçasını iki eşit parçaya ayırırsa o zaman bu nokta orta nokta olmuş olur ki bunun koordinatlarını bulmak daha kolay hale gelir. Sınır koordinatlarının toplamının yarısı orta noktanın koordinatlarını verir.
Paralelkenar dikdörtgen ve kare gibi şekillerin köşe koordinatları bulunurken de aynı mantıkla hareket edilir. Bu dörtgenlerin köşegenlerinin kesim noktası orta nokta olduğundan yukarıdaki örnekten yararlanarak; orta noktanın koordinatlarının bulunmasından hareketle, paralelkenar ve dikdörtgenlerin de köşe koordinatları bulunabilir. 

Aşağıdaki örnekleri kendiniz çözerek konuyu daha iyi pekiştirebilirsiniz. Cevapları yanlarında verilmiştir. (Doğru parçasının belli bir oranda bölen noktanın koordinatları)
Aşağıdaki örnekleri kendiniz çözerek konuyu daha iyi pekiştirebilirsiniz. Cevapları yanlarında verilmiştir. (Dörtgenlerin köşe noktalarının koordinatlarının bulunması)



İki Nokta Arası Uzaklık ve İspatı

Analitik düzlemde iki nokta arasıuzaklık hesaplaması yapılırken iki noktanıneksenlerde belirlediği  yerlerin arasındaki değişim miktarı dikkate alınır ve buna göre pisagor teoreminden uzaklık bulunur. Yani iki farklı noktanın ordinat bileşenleri farkının karesi ile apsis bileşenlerinin farkının karesi alınıp toplandıktan sonra pisagor teoremi gereği karekökü alınarak iki nokta arasındaki uzaklık bulunumuş olur.

Hicret ve Yeni Yılbaşı (1 Muharrem)

Allah Rasulü, Mekke’den ayrılıp,bir beldeye doğru yol alıyordu. Hurmalıklarla dolu bu yerin neresi olduğunu tam olarak anlayamamıştı. Bir an Yemame yada Hecer olabileceğini düşünmüş, fakat yanılmıştı. Zira orası daha sonra Medine ismini alacak olan Yesrib şehri idi. Bir rüya görmüştü Hz. Peygamber(s.a.v),tam da müşriklerin baskısı altında bunalan Müslümanların umut ışığı beklediği bir anda…
بِسْمِ اللّهِ الرَّحْمَنِ الرَّحِيمِ
الَّذِينَ آمَنُواْ وَهَاجَرُواْ وَجَاهَدُواْ فِي سَبِيلِ اللّهِ بِأَمْوَالِهِمْ وَأَنفُسِهِمْ أَعْظَمُ دَرَجَةً عِندَ اللّهِ وَأُوْلَئِكَ هُمُ الْفَائِزُونَ

Ayet-i Kerime'de Rabbimiz şöyle buyuruyor:“İman edip hicret eden ve Allah yolunda mallarıyla canlarıyla cihat eden kimselerin mertebeleri Allah katında daha üstündür. İşte onlar başarıya erenlerin ta kendileridir."(1-Tevbe, 9/20) 
 وَقَالَ النَّبِىُّ عَلَيْهِ الصَّلَاةُ وَ السَّلَامُ :
اَلْمُسْلِمُ مَنْ سَلِمَ الْمُسْلِمُونَ مِنْ لِسَانِهِ وَ يَدِهِ, وَالْمُهَاجِرُ مَنْ هَجَرَ مَا نَهَى اللهُ عَنْهُ.

Hadis-i Şerifte Peygamberimiz şöyle buyuruyor: “"İyi bir Müslüman, dilinden ve elinden Müslümanların emin olduğu kişidir. Asıl hicret eden de Allah'ın yasaklarını terk edendir."(2-Buhari, İman, 4.) Hz.Peygamber Efendimiz (s.a.v), Mekke’de tam 13 yıl insanları hakka, doğruya, tevhide çağırdı.Bu ulvi çağrıya icabet ederek ona gönülden inananlar olduğu gibi, bu çağrıyı duymazdan gelenlerde oldu. Mekkeli Müşrikler bütün insanlığa rahmet olarak gönderilen bu güzel nebiye akla hayale gelmeyecek işkence ve zulmü sergilediler. Ona kucak açma, ona ulaşma yerine, onu dışladılar, hayatına kastettiler. Bu ağır baskılar altında tebliğ ve davet görevini yerine getiremeyeceğini anlayan Kâinatın Efendisi,Miladi 622 yılında Mekke’den Medine’ye hicret etti.
Mekke’deki Müslümanlar bu hicrete hiç tereddüt etmeden katıldılar. Onların gözünde ne mal, ne evlat, ne de doğup büyüdükleri o güzelim vatanları vardı.Tek düşünceleri İslam’ı rahatça yaşayabilmek, onu yaymak ve onu tüm gönüllere yerleştirmek için gidilecek huzurlu ve sakin bir yerdi.

Pi Sayısı ve Tarihçesi

Matematikte cebirsel olmayan herhangi bir reel sayıya aşkın sayı denir. Diğer bir deyişle, katsayıları tamsayı (ya da rasyonel) olan bir polinomun kökü olamayan reel sayılara aşkın sayı denir. Buradan, tüm aşkın sayıların irrasyonel olduğu sonucuna varılabilir. Ancak tüm irrasyonel sayılar aşkın sayı değildir, Pi örneğin irrasyoneldir, ancak bir polinomunun köküdür. 

Basit Eşitsizlikler Kavrama Testi

Basit Eşitsizlik kavramını daha iyi anlamak için çeşitli soru tiplerinden derlenerek hazırlanmış kavrama  testini istifadenize sunuyoruz. 

Sadece basit eşitsizliklerini çözebilme, eşitsizlik kavramının özelliklerini öğrenebilme ve temel kuralları kazandırmak için oluşturulmuş test, her öğrenci seviyesine hitap edecek şekildeki sorulardan meydana gelmiştir.

Basit Eşitsizlikler Kavrama Testini (2*30dk) 2 ders saati içerisinde etkinlik olarak planlayabilirsiniz. Testi indirmek için tıklayınız...


Denklem Çözme Kavrama Testi

Denklem çözme kavramını daha iyi anlamak için çeşitli kitaplardan derlenerek hazırlanmış testimizi istifadenize sunuyoruz. 

Birinci dereceden denklem çözme, kavramını kazandırmak için oluşturulmuş test her öğrenci seviyesine hitap edecek şekilde rahatlıkla yapılabilecek sorulardan meydana gelmiştir.

Denklemler testini, ders ortamında 2 ders saati içinde (2*30dk) etkinlik olarak planlayabilirsiniz. Testi indirmek için tıklayınız...


Fonksiyonlarda Bileşke Kavrama Testi

Fonksiyonlarda bileşke kavramını daha iyi anlamak için hazırlanmış testimizi istifadenize sunuyoruz. 

Fonksiyonlarda bileşkenin tanımı ile ilgili örnek soru ve uygulamaların ter aldığı test her seviye öğrenci için uygundur. Rahatlıkla zorlanmadan sorular çözülebilir. 

Fonksiyonlarda bileşke testini, ders ortamında 2 ders saati (2*30dk) içerisinde bir etkinlik olarak planlayabilirsiniz. 

İki Vektörün Vektörel Çarpımı

İki vektörün vektörel çarpımı hesaplanırken vektörlerlerin standart birim vektörleri olan e1,e2 ve e3 vektörleri ile birlikte üçlü olarak determinant hesabı yapılır. Bu şekilde aşağıda verilen formülü ezberlemeden kolayca iki vektörün vektörel çarpımı bulunmuş olur. 
Vektörel çarpım yardımıyla taşıyıcı kolları vektör biçiminde verilen bir paralelkenarın alanı da bulunabilir. Aynı şekilde Uzayda lineer bağımsız  , a, b ve c üzerinde kurulu paralelyüzün hacmi, <axb,c> vektörel çarpım ve iç çarpım yardımıyla hacim hesabı yapılır.

Vektörel çarpımın özellikleri vektörel çarpımın tanımından yola çıkarak iki boyutta rahatlıkla görülebilir. Üç boyutlu uzayda da özellikleri benzer biçimde gösterebiliriz. Burada vektörel çarpım ile iç çarpım arasındaki ilişki de görülür.


Konu ile alakalı hazırladığımız uygulama testini indirip çözerseniz vektörel çarpım hakkında daha ayrıntılı bilgi sahibi olabilirsiniz. Testte yer alan sorular; vektörel çarpımın kullanım yerleri baz alınarak lise düzeyine uygun olacak şekilde hazırlanmıştır. (Klasik açık uçlu soru ve test tipi sorularından oluşan toplam 20+8=28 soruluk konu kavrama testini indirmek için tıklayınız.

Dik izdüşüm Vektörü

İzdüşüm, ışınlar aracılığıyla bir cismin şeklini iz düşüm düzlemine belirli kurallarla aktarılması.Yer elipsoidini harita düzlemi üzerinde matematiksel olarak gösterme yöntemine “harita izdüşümü” denir. Bu yöntem ; uygun izdüşümler, eşdeğer izdüşümler ve perspektif izdüşümler gibi sistemleri kapsar. Genellikle izdüşüm sistemi harita çizecek olan kişinin amacına göre seçilir.Kullanılan izdüşüm sistemleri arasında en eskisi “Mercator izdüşüm sistemi”dir. Yeri küresel kabul edilen bu sistem , deniz haritalarının yapımında bugün de kullanılmaktadır. Bu izdüşüm sisteminin geliştirilmesiyle “Mollweide izdüşümü” bulundu. Mollweide izdüşümünde boylam daireleri kutuplara doğru biribirine yaklaşır. Merkezi bir paralel boyunca yapılan konik bir açılımdan yararlanılan sistem “Lambert sistemi”dir. Bunlardan başka Laborde, dik, stereografik ve çok yüzlü, Gauss gibi daha çeşitli izdüşüm sistemleri de kullanılmaktadır.
Bir vektörün başka bir vektör üzerindeki dik izdüşümü alınırken öncelikle iki vektörün iç çarpımları bulunur. Daha sonra zemin vektörünün kendisiyle iç çarpımı bulunur. Bulunan bu sonuçların birbirine bölümü ile elde edilen sonuç zemin vektörüne katsayı olarak çarpılıldığında dik izdüşüm vektörü bulunmuş olur.

Yukarıda verilen izdüşüm formülü vektörlerin iç çarpımı yardımıyla rahatlıkla ispatlanabilir. İki vektörün birbiri üzerindeki dik izdüşüm vektörleri bulunurken iç çarpımdaki cos değeri ve cosinüs fonksiyonun tanımından yararlanılır.
Yukarıda geçen proj izdüşümü ifade etmek için kullanılan özel bir matematik terimidir. proj değerleri bulunduktan sonra daha kısaca yazabilmek için u ve v değerleri yazılarak izdüşüm vektörleri daha sade bir şekilde yazılmış olur.

Vektörlerde İç Çarpım (Öklid İç Çarpım)

Uzayda iki vektörün iç çarpımı bir reel (skaler) sayıdır. Öklid iç çarpımı ile birlikte R^3 uzayına Öklid uzayı denir. İki vektörün iç çarpımı yapılırken birinci vektörün her bileşeni ikinci vektörün aynı sıradaki bileşenleriyle tek tek çarpılır ve bütün çarpım sonuçları toplanır. Unutulmamalıdır ki iç çarpımın sonucu kesinlikle bir reel sayıdır.
Uzayda iki vektörün başlangıç noktalarının herhangi bir P noktasına taşınması ile oluşan açıya bu iki vektör arasındaki açı denir.Merkezi  P  olan  birim  çemberin,  bu  açının  kenarları  arasında kalan yayının uzunluğuna iki vektör arasındaki açının ölçüsü denir. İki vektörün arasındaki açı bulunurken vektörlerin normundan uzunluğundan faydalanarak cosinüs değeri bulunur. Daha sonra bu cosinüs değerini veren açı trigonometri cetvelinden yararlanarak veya bilinen açıların trigonometrik değerlerinden yola çıkarak açı hesaplanır.
İç çarpımın özelliklerini iki boyutta rahatlıkla ispatlayabiliriz. Aynı ispat üç boyutlu uzay için de geçerlidir. İç çarpımın geometrik yorumu vektörlerde izdüşüm vektörünü göstermek için kullanılır.

Vektörlerin Lineer Bağımlılığı

Uzayda doğrultuları aynı olan iki vektör lineer bağımlıdır. Yani biri diğerinin bir reel katı olarak yazılabilir.Uzayda, doğrultuları farklı olan iki vektör lineer bağımsızdır. Yani biri diğerinin katı olarak yazılamaz.Uzayda üçten fazla vektör lineer bağımsız olamaz.Uzayda, u , v ve w vektörleri verildiğinde w=a1.u +a2.v olacak şekilde, a1, a2 ∈ R sayıları bulunabiliyorsa bu üç vektöre lineer bağımlı, bulunamıyorsa lineer bağımsız vektörler denir.
u,v,ve w vektörlerinin lineer bağımsız olması için gerek ve yeter şart det(u,v,w) değerinin sıfırdan farklı olmasıdır. Uzayda lineer bağımsız vektörler ikişer ikişer birbirlerine dik ise bu sisteme dik koordinat sistemidenir. Uzayda bütün yer vektörlerinin kümesi R^3 ile gösterilir.

 
Vektörlerin lineer birleşimi yazılırken herbir vektör yukarıdaki tanım gereği lineer birleşimi olarak yazabilmek için vektörlerin eşitliğinden yararlanılır. Bir vektörün diğer vektörlerin lineer birleşimi olarak yazılabilmesi için  diğer vektörlerin uygun katsayılarla çarpımı olacak şekilde belli reel katsayılarının bulunması gereklidir.

Düzlemlerin Birbirine Göre Durumu

Uzayda aynı doğru üzerinde yer almayan farklı üç nokta bir düzlem belirtir. Bununla birlikte kesişen iki doğru, birbirine paralel olan iki doğru, bir doğru ve dışındaki bir nokta da bir düzlem belirtir. Bunlara göre iki düzlem birbirine göre durumları; 1)Paralel 2)Çakışık 3) Kesen düzlemler olarak isimlendirilir.
Yukarıda anlatılanlardan yola çıkarak üç düzlem içinde aynı durumlar söz konusudur. Düzlemlerin kesişimi bir doğru boyunca olacaktır. Kesişimleri olmayan düzlemler ise birbirine paralel düzlemlerdir.
Kesişen düzlemlerin arakesitlerinde meydana gelen açılara göre noktanın düzlemlere uzaklıkları bulunabilir.
 
Uzayda denklemi verilen düzlemlerin durumları içinde yukarıda anlatılan özellikler geçerlidir. Denklemlerinin duurmlarına göre düzlemler yine paralel, çakışık veya kesişen düzlemler olabilir. Denklemlerdeki x, y ve z'nin katsayılarına göre üç durum aşağıdaki gibi incelenir.

Dünyayı Değiştiren 17 Denklem

"Matematikçi Ian Stewart "Bilinmeyenin İzinde: Dünya'yı Değiştiren 17 Denklem" başlıklı kitabını yayımladı ve insanlığın tarihinde keşfedilen 17 matematiksel denklemi, bilimsel yoğunluğundan kurtararak, herkes tarafından anlaşılabilir bir hale soktu. Prof. Dr. Ian Stewart'a bu kitabını neden yazmaya karar verdiği sorulduğunda şöyle yanıt veriyor: 

"Denklemler kesinlikle sıkıcı olabilir ve çok karmaşık görünebilirler. Ancak bunun sebebi genellikle sıkıcı ve karmaşık bir şekilde sunulmalarındandır. Benim okullarımızdaki matematik öğretmenlerine göre bir avantajım var: Size toplamayı kendi başınıza nasıl yapacağınızı göstermeye çalışmıyorum. Denklemlerin nasıl çözüleceğini bilmeden de onların güzelliğini ve önemini takdir edebilirsiniz. Benim niyetim onları kültürel ve insani bir hale sokmak ve onları tarihimizdeki maskelerinden arındırmaktır. Denklemler, kültürümüzün önemli bir parçasıdır. Bu denklemlerin arkasındaki hikayeler, onları keşfedenler, onların yaşadıkları dönemler ve benzerleri oldukça etkileyicidir."

Önemli Not: Aşağıda kitapta yer alan denklemlerden 17 tanesinin ne anlama geldiği, tarihi, önemi ve modern dünyada nerelerde kullanıldığı ile ilgili örneklere değinilmiştir. Yazı metninin ana kaynağını şu adreste yer alan makaleden: (http://www.businessinsider.com/the-17-equations-that-changed-the-world-2012-7?op=1) orjinal diliyle inceleyebilirsiniz.Orjinal dilde yazılı metinden çeviri için aynen yararlanılan site: (http://www.evrimagaci.org/makale/18) adresidir. Bu adreste yer alan makalenin bazı bölümlerine sitemizde mevcut olan konu ile ilgili yazılarımızın bazı kısımlarının adresleri eklenerek okuyucuya daha fazla bilgiye ulaşma imkanı verilmeye çalışılmıştır.

1) Dik Üçgende Pisagor Teoremi

Ne Anlama Geliyor? 

Bir dik üçgende, en uzun kenarın (hipotenüsün) karesi, her zaman kısa kenarların karelerinin toplamına eşittir. Bu denklemde "a" ve "b" harfleri dik üçgenin kısa kenarlarını, "c" ise hipotenüsü (en uzun kenarı) temsil eder.


Tarihi Nedir?

Bu denkleme her ne kadar Pisagor ile ilişkilendirilse de, bu denklemi ispatlayan ilk kişinin kim olduğu halen kesin olarak bilinmemektedir. İlk net ispat Euclid tarafından yapılmıştır ve muhtemelen bu denklem Pisagor'dan 1000 yıl kadar önce Babilliler tarafından bilinmekteydi. Pisagorun yaşamı ve italya mektebi çalışmaları yazısı için: (Bkz. Arsimed Yüzeyleri ve çok yüzlüler) daha fazla bilgi elde edebilirsiniz.

Önemi Nedir?

Bu denklem, geometrinin temelinde bulunan denklemdir, cebir ile bağlantısını kurar ve trigonometrinin temelini oluşturur. Bu denklem olmaksızın isabetli bir şekilde haritacılık ve navigasyon yapılamazdı.

Modern Kullanımı Nedir?

Üçgenleme (triangülasyon) yöntemi sayesinde GPS ile yapılan navigasyonda noktalamalar ve kesin yer tayinleri yapılabilmektedir. Bunun haricinde mimaride, inşaat mühendisliğinde, adli bilimlerde merminin yolunun belirlenmesinde, depremlerin merkezinin tespitinde kullanılmaktadır.Üçgen şeklinde yer alan her türlü arazi ve alan hesaplamalarında ve uzunluk hesabında bu denklemden yararlanılmaktadır.

2) Logaritma Fonksiyonu ve Özellikleri

Ne Anlama Geliyor? 

Özellikle çok büyük sayılarla yapılacak çarpma işlemlerinin, belirli bir tabana göre logaritmik olarak yapıldığında, toplama biçiminde ifade edilebileceğini gösterir. Logaritmalar, "log" sembolüyle ifade edilirler ve genelde bu şekilde yazıldıklarında 10'luk tabandaki logaritma anlamına gelirler. Bu durumda, log(103) sayısı, 3 sayısına, yani 10'un üssü şeklinde ifade edilen sayının üssüne eşit olmaktadır. Bu sayede 1000 sayısı, 3 olarak ifade edilerek daha kolay biçimde işlem yapılabilir. Ancak logaritmaları farklı tabanlarla da kullanmak mümkündür. Örneğin log2(28) sayısı, 8'e eşittir. Böylece 256 sayısı 2'lik logaritma tabanında 8 olarak ifade edilebilir. Yukarıdaki denklem, bu şekilde büyük sayıların birbiriyle çarpımında, logaritmanın kullanılarak çarpma gibi devasa sonuçlar verebilen bir işlemi toplama gibi daha ufak sonuçlar verebilen ve daha hızlı yapılabilen bir hale dönüştürebileceğimizi gösteriyor. Burada "x" ve "y" harfleri herhangi iki sayıyı ifade ediyor. Üslü ifadelerin yetersiz kaldığı durumlarda logaritma özellikleri bir başvuru aracı durumunda olmuştur.

Tarihi Nedir?

Konsept ilk olarak Merchiston'dan bir İskoç bilim insanı John Napier tarafından keşfedildi. Napier, büyük sayıların çarpımının çok zor ve uğraştırıcı olduğunu fark etti ve bunları kolay ve hızlı bir şekilde yapabilmeyi hedefledi. Geliştirdiği sistem sonradan Henry Briggs tarafından tablolaştırıldı ve çok daha güçlü bir araç haline geldi.

Önemi Nedir?

Logaritmanın keşfi tek kelimeyle devrimdi. Bu sayede mühendisler ve astronomlar hesaplamaları çok daha hızlı yapabilmeye başladılar. Günümüzde bilgisayarların keşfiyle bu devrim önemsiz kalmıştır; ancak yine de bugünlere gelebilmemiz için bilim insanları açısından önemlidir.

Modern Kullanımı Nedir?

Logaritmalar halen radyoaktif bozunum gibi çok önemli konularda kullanılmaktadır. Aslında logaritmalar, zamana bağlı değişimlerin (azalma veya artma) olduğu hemen her alanda karşımıza çıkarlar. Örneğin banka kredilerinin üzerine eklenecek faizlerin hesabında logaritma fonksiyonları kullanılabilmektedir. Bunun haricinde biyologlar popülasyonlar üzerinde çalışırken, fizikçiler nükleer tepkimeler üzerinde çalışırken, kimyagerler zincir tepkimeleri üzerinde çalışırken, bankacılar yatırımları üzerinde çalışırken logaritmaları kullanmaktadır. Ayrıca fizyologlar tarafından gözün ışığa verdiği tepkiyi ölçmekte kullanılır. Son olarak, özellikle makina ve elektrik mühendisleri tarafından sinyallerin ve titreşimlerin zaman içerisinde sönümlenmesinin hesabında kullanılmaktadır. Bilgisayar mühendisleri de bir yazılımın ne kadar hızlı çalışacağını hesaplamak için logaritmalara başvururlar. 

3) Kalkülüs'ün Temel Teoremi (Türev Tanımı)

Ne Anlama Geliyor? 

Bir değerin zaman içerisindeki sonsuz küçüklükteki değişimlerinin birikerek, o değerin belli bir zamandaki toplam değişimine eşit olacağını gösterir. Bir diğer deyişle, değişim içerisindeki bir fonksiyonu, çok çok küçük zaman aralıklarında değerlendirecek ve bu değişimleri toplayacak olursak, bu değişimlerin toplamının, genel değişim toplamına eşit olacağını gösteren denklemdir. Burada "f" harfi değişimini incelediğimiz fonksiyonu, "t" harfi ise hangi değişkene göre değişimin izlendiğini göstermektedir. "t", genellikle zamanı ifade eder, dolayısıyla "f" fonksiyonunun zamana göre değişimi incelenir. Bunu ifade eden denklemin sol tarafı, fonksiyonun zamana göre türevinin alındığını gösterir. Denklemin sağ tarafındaki "t" yine zamanı, "f(t)" yine zamana bağlı olan herhangi bir fonksiyonu ifade eder. "h" ise küçük bir değişimi temsil etmektedir, dolayısıyla "f(t+h)", elimizdeki fonksiyonun "t" anından çok az bir zaman sonraki halini ifade etmek için kullanılır. Bu "çok az bir zaman farkını" anlatmak için ve fonksiyonun o ufak değişimini ifade etmek için matematiksel limit kullanılır ve "lim" ile gösterilen budur. Matematikte bu durum çok iyi bir şekilde bilinen türev kavramının limit ile ifadesi anlamına gelmektedir. Kısacası türevin temel tanımı olarak karşımıza çıkar.

Tarihi Nedir?

Günümüzde bildiğimiz Kalkülüs 17. yüzyılda Isaac Newton ve Gottfried Leibniz tarafından geliştirilmiştir ve günümüzde Dünya'nın her yerinde aynı şekilde ifade edilir. Bu denklemin keşfiyle ilgili uzun yıllar bilgi hırsızlığı (intihal) iddialarında bulunulmuştur. Ne yazık ki halen bu denklemin gerçek sahibine karar verilememiştir. Bu sebeple bu iki bilim insanının da bakış açılarını ve dehalarını bu denklemi anmak için kullanıyoruz.

Önemi Nedir?

Ian Stewart'a göre bu denklemin önemi şöyledir: "Diğer bütün matematiksel tekniklerden öte, bu denklem modern dünyayı meydana getirmiştir." Kalkülüs, katı cisimleri, eğrileri ve alanları ölçmekte ve anlamakta kullandığımız temel araçtır. Birçok doğa kanununun temelinde yer alır ve diferansiyel denklemlerin kaynağıdır. Bu türev tanımını kullanarak çeşitli fonksiyonların türevlerini veren ifadeleri de rahatlıkla ispatlayabiliriz. Örnek olarak sinüs fonksiyonun tüevini bu tanım yardımıyla bulabiliriz. Örnek sinüs ve cos fonksiyonları türevleri için: (Bkz. Sinüs ve Cosinüs Fonksiyonları Türevleri ve İspatları) adresinden geniş bilgi alabilirsiniz.

Modern Kullanımı Nedir?

En uygun çözümün gerektiği her türlü problemde kullanılır. Tıp, ekonomi ve bilgisayar bilimleri için temeldir. Mühendisler tarafından GPS sistemlerinin geliştirilmesinde, gökdelenlerin ve köprülerin inşasında, robotların parçalarının belirli emirlere nasıl tepki vereceğinin analizinde, sistem tasarımında, araçların güvenliğinin geliştirilmesinde kullanılmaktadır. Biyologlar tarafından ekosistem içerisindeki türlerin değişiminde, ilaçların vücut içerisindeki derişiminin hesaplanmasında, anatomik ve fiziksel özelliklerin (kemik uzunluğu gibi) belirlenmesinde, bakteri gibi türlerin çoğalma hızlarının tespitinde kullanılır. Ekonomide pazar tahminlerinde, gelir düzeylerinin belirlenmesinde, problemlerin en uygun çözümlerinin geliştirilmesinde, aylık ödeme miktarlarının belirlenmesinde kullanılır. Bunlar haricinde anket sonuçlarının değerlendirilmesinde, hastalıkların ilerleme hızının tespitinde, küresel haritalandırma yöntemlerinin geliştirilmesinde, paradoksal sorunların çözülmesinde yer alır.

4) Newton'un Evrensel Çekim Yasası

Ne Anlama Geliyor? 

Evrendeki her bir cismin, her bir diğer cismi kütlesiyle doğru, aralarındaki uzaklığın karesiyle ters orantılı olarak kendine doğru çektiğini gösteren denklemdir. Kısaca, evrendeki cisimler arasındaki çekim kuvvetini hesaplamak için kullanılır. Sol taraftaki "F", cisimlerin her birine etkiyen kuvveti gösterir. "G", evrensel kütleçekim sabitidir ve yaklaşık olarak 6.67 x 10-11 N(m/kg)2 değerine sahiptir. "m1" ve "m2", incelenen iki cismin kütlelerini ifade eder. "d" ise, iki cisim arasındaki dik uzaklıktır.

Tarihi Nedir?

Isaac Newton bu çalışmasını kendisinden önce Johannes Kepler'in yaptığı çalışmalar üzerine kurmuştur. Bir ihtimal, Robert Hooke'un çalışmalarından faydalanmış ve bir miktar intihal yapmış olabilir.

Önemi Nedir?

Dünya'nın nasıl çalıştığını anlamamızı sağlar ve kalkülüsü kullanır. Her ne kadar sonradan Einstein'ın görecelik teorisi tarafından gölgede bırakıldıysa da, halen cisimlerin birbirleriyle nasıl etkileştiği konusunda bilgi edinmemizi sağlar. Günümüzde uyduların ve sondaların yörüngelerini tasarlamak için kullanılmaktadır.

Modern Kullanımı Nedir?

Yeni uzay görevleri başlatıldığında, en uygun kütleçekimsel tüplerin (veya yolakların) bulunmasını sağlar ve bunların enerji bakımından en verimli olmasını hedefler. Ayrıca uydu kanallarının televizyonlarımızda görünebilmesini sağlar. Bunun haricinde gezegenlerin hareketlerinin tahmininde kullanılır ve bu yöntemle yapılan Neptün'ün keşfi Nobel Ödülü getirmiştir. Ayrıca bu yasa kullanılarak gelgitler ve miktarları belirlenir. Son olarak, birçok füze ve uydu sistemlerinin analizi bu denklem ile yapılır.

5) Karmaşık Sayılar (Kompleks Sayıların) Kökeni

Ne Anlama Geliyor? 

Sanal (kompleks, karmaşık) bir sayının karesinin negatif olacağını gösterir. Buradaki "i" bir sayıdır ve her zaman "-1" sayısının kareköküne eşittir. Normalde, lise sıralarında negatif sayıların karekökü olmaz." diye öğretilse de, bu ifade tam olarak doğru değildir. Negatif sayıların karekökü, karmaşık sayılar verir. Reel sayılarda negatif bir sayının çift dereceli kökü olmadığından reel sayılar kümesi sanal birim oluşturularak genişletilme gereği duyulduğundan karmaşık sayılar inşa edilmiştir. i sanal biriminin kuvvetlerine göre artık reel sayıları da içerisine alan daha geniş bir sayı kümesi karmaşık sayılar elde edilmiş olur.

Tarihi Nedir?

Hayali sayılar aslında ilk olarak kumarbaz matematikçi Girolamo Cardano tarafından ileri sürülmüştür. Daha sonradan Rafael Bombelli ve John Wallis tarafından geliştirilmiştir. William Hamilton tarafından kesin tanımları yapılana kadar garip bir sorun olarak matematikte kalmışlardır.

Önemi Nedir?

Stewart'a göre: "Elektrik ışıklandırmalarından dijital kameralara kadar birçok modern teknoloji bu sayılar olmadan icat edilemezdi." Hayali sayılar, karmaşık analizlerde kullanılır ve bunlar da, mühendislerin çalışma alanındaki pratik sorunların çözülmesinde kullanılır.

Modern Kullanımı Nedir?

Elektrik mühendisliğinde ve karmaşık matematik teorisinde yoğun olarak kullanılır. Elektrik mühendisliği dahilinde bir devre elemanının verilen bir zamandaki durumunu belirlemek amacıyla kullanılabilir. Bunun haricinde elektromanyetik kuram dahilinde, elektrik alan kuvveti ile manyetik alan kuvvetini ifade etmekte kullanılır. Ayrıca akışkanların bir cisim etrafındaki hareketini tanımlarken karmaşık analizler gerekir ve burada bu sayılar devreye girer. Benzer şekilde, ekonomik sistemlerin davranışlarının analizinde bu sayıların kullanılması gerekir. 

6) Euler'in Çokyüzlü Katı Cisimler Formülü

Ne Anlama Geliyor? 

Bir uzayın, yöneliminden bağımsız olarak şeklinin ve yapısının tanımlanmasını sağlar. Yukarıdaki denklemde "F", bir çok yüzlü geometrik şeklin "yüz" sayısını, "E" aynı şeklin "kenar" sayısını, "V" ise aynı şeklin "köşe" sayısını ifade eder. Denkleme göre, yüz sayısı ile köşe sayısının toplamından kenar sayısını çıkarırsanız, hangi şekli inceliyor olursanız olun 2 sayısını elde edersiniz. Bir kübü düşünelim: 6 yüzü, 8 köşesi ve 12 kenarı vardır. Yukarıdaki denkleme koyacak olursanız, 6-12+8 işleminin sonucu 2'dir ve denklem sağlanır. Bunu her geometrik şekil ile deneyebilirsiniz.

Tarihi Nedir?

İlk olarak Descartes tarafından tanımlanan bu ilişki, sonradan Leonhard Euler tarafından 1750 yılında gözden geçirilmiş, ispatlanmış ve yayımlanmıştır. Platon cisimleri de denilen çok yüzeylilerdeki bu kenar köşe ve yüz sayıları arasındaki ilişkiyi Euler modern anlamda ispatlayarak eserlerinde neşretmiştir. 
Platon cisimleri için ayrıntılı bilgi: (Bkz. Platon-cisimleri) 
Euler Formülü kullanım örnekleri için: (Bkz. Çok yüzlü cisimler için Euler Formülü) 
Arşimed Yüzeyleri: (Bkz. Arşimed Yüzeyleri ve Çok yüzlüler) adreslerini inceleyebilirsiniz.

Önemi Nedir?

Topografi (yüzey bilimi) açısından temel öneme sahiptir. Bu bilim dahilinde herhangi bir geometri sürekli yüzey olarak ifade edilir. Aynı zamanda mühendisler ve biyologlar için önemlidir.

Modern Kullanımı Nedir?

Topoloji, DNA'nın davranışını ve fonksiyonlarını anlamakta kullanılmaktadır. Bunun haricinde, topoloji sayesinde robotik alanında kullanılan sensörlerin isabetliliği arttırılmıştır.

7) Normal Dağılım

Ne Anlama Geliyor? 

Özellikle istatistik alanında sıkça kullanılan normal dağılım eğrisinin formülize edilmiş halidir. Standart normal dağılımı tanımlar. Bu dağılım, bir çan eğrisi şeklinde gözükür ve bir gözlem olasılığının en muhtemel olarak ortalama civarında olduğunu ifade eder. Ortalama değerden uzaklaştıkça o olayın görülme olasılığı azalır. Denklemde sol taraf, dağılım fonksiyonunu göstermektedir. Buradaki "1 bölü karekök içerisinde 2 çarpı pi'nin" varlığı, sol taraftaki fonksiyonun altında kalan alanın 1'e eşit olmasını sağlar. Karekök içerisindeki diğer harf olan "sigma", "standart sapma" ifadesidir. Sonrasında bu ifade, eksponansiyel ("e" üzeri olarak gösterilir) bir sayı ile çarpılmaktadır. Bu sayı içerisindeki "x" fonksiyonumuzun değişkenini, parantez içerisinde "x"ten çıkarılan "mü" sayısı ise "ortalama" değeri ifade eder. Geri kalanı, izah edilen değişkenlerle aynıdır. 

Tarihi Nedir?

İlk olarak Blaise Pascal tarafından geliştirilen sistem sonradan Bernouilli tarafından son hali verilmiştir. Bugünkü çan eğrisi ise Belçikalı matematikçi Adolphe Quetelet tarafından tanımlanmıştır.

Önemi Nedir?

Modern istatistiğin temelindeki denklemdir. Bilim ve özellikle sosyal bilimler, bu denklem olmadan bugünkü halini alamazdı.

Modern Kullanımı Nedir?

İlaçların, klinik deneylerde, negatif etkilerine karşılık yeterince etkili olup olmadıklarını anlamak için kullanılır. Bunun haricinde özellikle üniversite öğrencilerinin sürekli olarak yarışmaları gereken bir dağılım eğrisi çıkarılmasını sağlar. Genel olarak, dağılımların olduğu her yerde çan eğrileri kullanılabilir. Evrimsel biyoloji dahilinde, popülasyonları modellemek ve evrimsel değişim yönlerini analiz etmek amacıyla çan eğrilerine başvurulur.

8) Dalga Denklemi

Ne Anlama Geliyor? 

Dalgaların davranışlarını tanımlayan diferansiyel denklemdir. Esasında bir keman telinin titreşimini tanımlamak için geliştirilmiştir. Burada, sol taraftaki "u", genelde zamana ve konuma bağlı olan bir fonksiyonu ifade eder. "t", zamanı gösterir. Soldaki ifadenin tamamı ise, "u" fonksiyonunun zamana bağlı olarak ikinci türevidir. Sağ tarafta yer alan "c", denklemin başlangıç koşulları tarafından belirlenen, herhangi bir sabittir. Sonraki ifade ise, aynı "u" fonksiyonunun bu defa zamana göre değil, "konuma" göre, yani "x" harfine göre ikinci türevidir. Kimi zaman bunun yerine Laplasyen formda da yazılabilir. O zaman, Laplace operatörü olan ters üçgen işareti koyulur.

Tarihi Nedir?

Matematikçi Danielle Bernouilli ve Jean D'Alambert tarafından 18. yüzyılda keşfedilmiştir. İkili, aynı denklemi birbirlerinden biraz farklı olarak tanımlamışlardır.

Önemi Nedir?

Dalgaların davranışı, seslerin nasıl çalıştığına, depremlerin nasıl oluştuğuna ve okyanusların davranışlarına genellenebilmektedir.

Modern Kullanımı Nedir?

Petrol firmaları patlattıkları patlayıcılardan yayılan ses dalgalarını ölçerek jeolojik oluşumları tespit etmektedirler. Bunun haricinde müzik aletlerinin ve televizyonların yapılabilmesini ve geliştirilmesini sağlamaktadır. Evlerimizde kullandığımız mikrodalga fırınları mümkün kılmıştır. Günümüzde birçok tür elektromanyetik dalgaları kullanarak yönlerini, avlarını ve avcılarını tespit eder. Ayrıca sonarlar gibi engel ve yüzey tespit aletlerinin üretilebilmesini mümkün kılmıştır. Kısaca dalgaların olduğu her alanda geniş ufuklar açmıştır.

9) Fourier Dönüşümü

Ne Anlama Geliyor? 

Zamana bağlı fonksiyonları, frekansa bağlı olarak tanımlamaya yarar. Burada, sol taraf dönüşümün sonucunu gösteren fonksiyondur (ancak burada fonksiyonun tersi olarak yazılır) ve "xi" harfi, frekansı ifade eder. Sağ tarafta, eksi sonsuzdan artı sonsuza kadar integral alınmaktadır. İntegrali alınan fonksiyon, genellikle zamana bağlı olarak ifade edilen ve frekansa bağlı ifadesini aradığımız fonksiyondur ve "f(x)" olarak gösterilir. Yani bu durumda, "x" genellikle zamanı belirtir. Geri kalan ifadeler ise, bildiğimiz "pi" sayısı, "i" karmaşık sayısı, "x" değişkeni ve "xi" frekansıdır. "dx" ise integralin değişkenini belirtmektedir.

Tarihi Nedir?

Joseph Fourier bu denklemi meşhur ısı denkleminden genişleterek çıkarmıştır. Bu denklemi daha önceden dalga denklemi olarak anılmaktaydı.

Önemi Nedir?

Bu denklem sayesinde karmaşık şablonlar basitleştirilebilir, temizlenebilir ve analiz edilebilir. Birçok sinyal analizi alanında önem taşımaktadır.

Modern Kullanımı Nedir?

Bilginin JPEG formatında saklanabilmesini ve moleküllerin yapısının keşfedilebilmesini sağlamaktadır. Optik görüntülerin, müzikal enstrümanların, kuantum mekanik sistemlerin anlaşılabilmesinde ve analizinde kullanılır. Ayrıca sinyal analizinde, ışık deneylerinde ve yüzey akımlarının radyasyonunun tespitinde geniş olarak kullanılır.

10) Navier-Stokes Denklemi

Ne Anlama Geliyor? 

Denklemin sol tarafı küçük miktarda bir akışkanın ivmesidir, sağ tarafı da üzerine etki eden kuvvetleri belirler. Dolayısıyla bu denklem, Newton'un İkinci Yasası'nın akışkanlara genişletilmiş bir versiyonudur. Bu denklemde sol taraftaki ilk harf olan "ro", akışkan yoğunluğunu gösterir. Parantez içerisindeki "del v bölü del t" olarak okunan ifade, akışın hızının zamana göre değişimi, yani akışın ivmesidir. Parantez içerisindeki ikinci terim, akışın hızı ile akışın gradyanını (değişim vektörünü) birbiriyle çarpan ifadedir. Denklemin sağ tarafındaki ters üçgen, del operatörüdür. İlk terimde akışın basıncının del operatörü ile çarpımı alınır. Sonrasında ise aynı işlem, toplam stres tensörü ile yapılır ve sonunda bu iki terimin toplamına "f" ile ifade edilen vücut kuvvetleri eklenir.

Tarihi Nedir?

Leonhard Euler bir akışkan hareketini tanımlamaya çalışan ilk kişi oldu, ancak denkleme son halini Fransız mühendis Claude-Louis Navier ve İrlandalı matematikçi George Stokes vermiştir.

Önemi Nedir?

Bilgisayarlar bu denklemi çözebilecek kadar güçlü hale geldiğinde, fizik alanında karmaşık ve çok faydalı alanların açılmasını sağlamıştır. Özellikle araçların daha aerodinamik olarak üretilebilmesini mümkün kılmıştır.

Modern Kullanımı Nedir?

Birçok diğer teknoloji ile birlikte, modern yolcu jetlerinin yapılabilmesini sağlamıştır. Bunun haricinde akışkanların düzgün ve türbülanslı bir biçimde hareketinin analizinde kullanılır. Bu sayede, içerisinde akışkanların hareketini barındıran her türlü teknolojinin geliştirilebilmesini mümkün kılmıştır.

11) Maxwell Denklemleri

Ne Anlama Geliyor? 

Elektrik ve manyetik alanlar arasındaki ilişkiyi gösterir. Bu denklemlerde "E" elektrik alanını, "H" (veya kimi kaynakta "B") manyetik alanı ifade eder. Yine "del" operatörü kullanılarak nokta (dot) ve çarpı (cross) çarpımları yapılmaktadır (bunlar vektörlerin birbiriyle çarpım biçimleridir). Denkleme göre del operatörü ile yapılan nokta çarpımı elektrik alanı için "ro" ile gösterilen elektrik yükü yoğunluğunun "epsilon sıfır" ile gösterilen dielektrik sabitine bölümüdür. Buna Gauss Yasası da denir. Aynı işlem manyetik alan için yapılacak olursa, sıfır elde edilir. Buna Gauss'un Manyetik Yasası da denir. Çarpı çarpımının sonucu ise görselin sağ tarafında gösterilen denklemleri verir ve elektrik alanı ile yapılan çarpım manyetik alanın zamana göre değişimini verir. Buna Faraday'ın Endüksiyon Yasası veya Maxwell-Faraday Denklemi de denir. Manyetik alana göre yapılan çarpım ise daha karmaşık bir denklem olan Amper'in Devre Yasasının Maxwell Doğrulaması olarak bilinen denklemi doğurur. Burada denklemin sağ tarafında "mü sıfır" olarak gösterilen boş uzayın geçirgenliği, "J" olarak gösterilen akım yoğunluğu, diğerleri ise daha önce bahsedilen özelliklerdir.

Tarihi Nedir?

Elektrik ve manyetik alanları birleştirmeye çalışan ilk kişi Michael Faraday'dır ve bu çabası ilk olarak James Clerk Maxwell tarafından denkleme dönüştürülmüştür. Bu keşif, fiziği temelden değiştirmiştir.

Önemi Nedir?

Elektromanyetik dalgaların tahmin edilmesini ve daha iyi anlaşılmasını sağlamıştır. Bu sayede, günümüzde kullandığımız birçok teknoloji mümkün olmuştur.

Modern Kullanımı Nedir?

Radar, televizyon ve modern iletişim bu denklem sayesinde mümkün olmuştur. Özellikle cep telefonu sinyallerinin dağıtımı ve ulaştırılmasında etkili olan bir denklemdir.

12) Termodinamik'in İkinci Yasası

Ne Anlama Geliyor? 

İzole bir sistemin entropisinin (düzensizliğinin) asla azalamayacağını ve düzensizliğin sisteme enerji akışı olmadığı sürece daima artmak zorunda olduğunu gösteren denklemdir. Tüm sistemlerin termodinamik denge hali olan maksimum düzensizlik haline evrimleşmek zorunda olduğunu gösterir. Denklemdeki "dS" ifadesi, entropinin zamana bağlı değişimini ifade eder ve bu değişim her zaman pozitif olmak zorundadır. Yani karmaşıklık (düzensizlik) daima artar.

Tarihi Nedir?

Sadi Carnot, doğada geri döndürülebilir bir sürecin olmadığını keşfeden ilk kişidir. Matematikçi Ludwig Boltzmann bu yasayı geliştirmiştir ve William Thomson resmi olarak ilan etmiştir.

Önemi Nedir?

Enerjiyi ve evreni entropi (kaos, düzensizlik) çerçevesinde anlamamızı sağlayan denklemdir. Isıdan elde edebileceğimiz iş miktarını anlamamızı sağlamış, daha iyi buharlı makineler üretebilmemizi sağlamıştır.

Modern Kullanımı Nedir?

Maddenin atomlardan oluştuğunu ispatlamamızı sağlamıştır. Bu bile yeterli bir kullanım alanıdır; ancak bunun haricinde, otomobil motorlarının, buzdolaplarının geliştirilmesini sağlamıştır. Üstelik canlı-cansız sistemlerinin doğal davranışlarını anlamamızı ve canlılığın öncelikle cansızlıktan nasıl evrimleştiğini ve bunu nasıl sürdürdüğünü, sonrasında ise canlılığın açık sistemlerde kendi içerisinde nasıl evrimleşebileceğini anlamamızı sağlamıştır. Bu sayede evrene ve doğaya bakış açımızı değiştirmiştir. Bunun haricinde birçok kimyasal tepkimenin hangi ortam koşullarında, nasıl ve ne biçimde gerçekleştiğini anlayabilmemizi sağlamıştır. Isı ve enerji akışının olduğu her sistemin analizini mümkün kılmıştır.

13) Einstein'ın Görecelik Teorisi

Ne Anlama Geliyor? 

Enerjinin, kütle ile ışık hızının karesinin çarpımına eşit olduğunu gösterir. Denklemin sol tarafındaki "E", enerjiyi ifade eder. Sağ tarafındaki "m" cismin kütlesini, "c" ise ışık hızını gösterir.

Tarihi Nedir?

Fiziğin içinden olmayan insanlar için daha az bilinen bir hikaye, Einstein'ın meşhur denkleminin Albert Michenson ve Edward Morley tarafından yapılan bir deneye dayanmasıdır. Bu deneyde ışığın referans düzlemleri açısından Newton fiziği ile açıklanamayan bir şekilde hareket ettiği gösterilmiştir. Einstein bu keşfin üzerinden giderek 1905 yılında özel görecelik, 1915 yılında genel görecelik kuramlarını ileri sürmüştür.

Önemi Nedir?

Muhtemelen insanlık tarihinin en meşhur denklemidir. Madde ve gerçeklik ile ilgili tüm görüşlerimizin değişmesini sağlamıştır. 

Modern Kullanımı Nedir?

Nükleer silahlarda, GPS cihazlarında kullanılmaktadır. Günlük yaşamda teknolojik açıdan doğrudan çok fazla çıkarımı olmasa da, evrene bakışımızı değiştirmesi açısından büyük öneme sahiptir. Zaman ve uzayla ilgili algımızı yeniden yaratmış, zamanın bile farklı referans noktaları için farklı değerlere sahip olabileceğini, hiçbir şeyin mutlak olarak ölçülemeyeceğini ispatlamıştır.

14) Schrödinger Denklemi

Ne Anlama Geliyor? 

Maddeyi bir parçacık yerine dalga olarak modellemeye yaramaktadır. Denklemin sl tarafındaki ifadede "i" karmaşık sayıyı, "çizgili h" indirgenmiş Planck sabiti olan 1.054x10-34 J.s değerini, "t" zamanı gösterir. Bu ifadeden çıkarılan "psi" harfi ise dalga fonksiyonunu ifade eder. Denklemin sağ tarafındaki "şapkalı H" ise Hamiltonyen operatördür ve bu durumda, dalga fonksiyonunun toplam enerjisini ifade eder ve duruma göre farklı sonuçlar verebilir.

Tarihi Nedir?

Louis-Victor de Broglie maddenin ikili yapısını 1924 yılında göstermiştir. Bu denklem ise Erwin Schrödinger tarafından 1927 yılında geliştirilmiştir ve Werner Heisenberg gibi fizikçilerin bulguları üzerine kuruludur.

Önemi Nedir?

Küçük boyutlardaki fizik algımızda devrim yaratmıştır. Parçacıkların belirli olasılık düzeylerinde bulunduğunu keşfetmemiz, fiziğe tamamen yeni bir yön vermiştir.

Modern Kullanımı Nedir?

Yarıiletkenler ve transistörlerde kullanılır. Bu sebeple modern bilgisayar teknolojilerinin temelinde yer alır. Ayrıca maddenin atomik yapısının net olarak anlaşılabilmesine imkan sağlamıştır. Dalga mekaniğinin en güçlü araçlarından biri bu denklemdir.

15) Shannon'un Bilgi Teorisi

Ne Anlama Geliyor? 

Bir kodun bileşen sembollerinin olasılıklarından yola çıkarak o kod içerisindeki veri miktarını tahmin etmeye yarayan denklemdir. Denklemde sol tarafta yer alan ve "H" harfi gibi gözüken ama Yunan harflerinden biri olan "eta", entropiyi (düzensizliği) simgeler. Denklemin sağ tarafındaki büyük E gibi gözüken ifade, seri toplama ifadesidir. p(x) incelemekte olan fonksiyonu gösterir ve bu fonksiyon, seri toplama ifadesi altında aynı fonksiyonun logaritmasıyla çarpılmaktadır.

Tarihi Nedir?

Bell Laboratuvarları mühendislerinden Claude Shannon tarafından 2. Dünya Savaşı sırasında geliştirilmiştir.

Önemi Nedir?

Stewart'a göre: "Bilgi çağını başlatan denklem bu olmuştur." Mühendislerin çok verimli kodlar aramasına engel olarak, CD'lerden tutun da dijital iletişime kadar birçok teknolojiyi mümkün kılmıştır.

Modern Kullanımı Nedir?

Kodlar içerisinde hataların bulunabileceği hemen her yerde kullanılmaktadır.

16) Popülasyon Büyümesinin Lojistik Modeli

Ne Anlama Geliyor? 

Bir türe ait popülasyonun nesiller içerisinde, kısıtlı kaynaklar dahilinde nasıl değişeceğini tahmin etmemizi sağlar. Denklemin sol tarafı verilen bir popülasyon büyüklüğünün belli bir zaman sonraki değerini ifade eder. Denklemin sağ tarafındaki "k" harfi popülasyonun büyüme oranını, "xt" ise birim zamanda popülasyonun büyümesinin, popülasyonun taşıma kapasitesine bölümünden elde edilen sonuçtur.

Tarihi Nedir?

Popülasyon büyümesinin kaosa neden olabileceğini ileri süren ilk kişi 1975 yılında Robert May olmuştur. Vladimir Arnold ve Stephen Smale gibi matematikçilerin çalışmaları sayesinde bu kaosun diferansiyel denklemlerle ifade edilebileceği anlaşıldı.

Önemi Nedir?

Kaos teorisinin geliştirilebilmesini sağlamıştır. Bu da, doğal sistemlerin nasıl işlediğine dair anlayışımızı tamamen değiştirmiştir.

Modern Kullanımı Nedir?

Yer ve hava olaylarının araştırılmasında özellikle depremlerin modellenmesinde ve hava durumunun tahmin edilmesinde kullanılmaktadır.

17) Black-Scholes Modeli

Ne Anlama Geliyor? 

En risksiz biçimde fiyatın belirlenmesini ve bu belirlenen fiyatın ara kazanç fırsatı olmadan doğru fiyat olmasını sağlayan denklemdir. Denklemdeki "sigma" bir malın fiyatlarındaki dalgalanmayı, "S" malın fiyatını, "V" zamana ve mal fiyatına bağlı bir fonksiyonu, "r" yıllık risksiz faiz miktarını belirtir. Denklemde karmaşık bir türev hesabı yapılarak fiyatlar belirlenmeye çalışılmaktadır.

Tarihi Nedir?

İlk olarak Fischer Black ve Myron Scholes tarafından geliştirilmiştir ve sonrasında Robert Merton tarafından genişletilmiştir. Bu ikili, keşifleri sayesinde 1977 yılında Nobel Ekonomi Ödülü'nü almışlardır.

Önemi Nedir?

Günümüzde trilyon dolarlarla ifade edilebilen pazarların kurulmasını mümkün kılmıştır. Bu denklemlerin ve türevlerinin kötüye kullanımının ekonomik krize neden olduğu iddia edilmiştir. Bu denklemlerin, gerçek piyasada geçerli olmayan varsayımlarda bulunduğu bilinmektedir.

Modern Kullanımı Nedir?

Bu denklem ve türevleri halen ürünlerin fiyatlandırılmasında kullanılır. Ekonomi alanında ve ekonomik sistemlerin alt yapılarında iktisat teorilerinde bu denklem kullanımı mevcuttur."

KAYNAK: http://www.businessinsider.com/the-17-equations-that-changed-the-world-2012-7?op=1 orjinal dilde yazılı metinden çeviri için yararlanılan site: http://www.evrimagaci.org/makale/18