30°–60°–90° üçgeninde; Hipotenüsün uzunluğu, 30° lik açının karşısındaki kenarın 2 katıdır. 60° lik açının karşısındaki kenarın uzunluğu, 30° lik açının karşısındaki kenarın uzunluğunun √3 katıdır.
Net Fikir » üçgen » Açılarına göre özel dik üçgenler
Açılarına göre özel dik üçgenler
Etiketler :
dik üçgen
geometri
matematik
pisagor teoremi
üçgen
45°–45°–90° üçgen, bir ikizkenar dik üçgendir. İkizkenar dik üçgende; Hipotenüsün uzunluğu, 45° lik açının karşısındaki kenarın uzunluğunun √2 katıdır.
Açılarına göre özel dik üçgenleri bilmek çok önemlidir. Genellikle sorularda bunların sık kullanımı gerekebilir. Bazı sorularda sizden ek çizim yapmanız beklenir. Soru İçinde 30°, 45° veya 60° lik açı varsa, bu açıların karşısındaki köşelerin herhangi birinden dikme indirerek dik üçgen oluşturulabilir. Bazen de verilen açıyı özel açılara bölecek şekilde ek çizgiler yardımıyla sorular çözülür.
15°–75°–90° üçgeninde, hipotenüse çizilen yüksekliğin uzunluğu, hipotenüs uzunluğunun dörtte biri kadardır.
30°–30°–120° üçgeninde, esasında 30°–60°–90° üçgenleri vardır. Kolaylık olması açısından bu ikizkenar üçgende; ikizkenarların uzunluğunun √3 katı, 120° lik açının karşısındaki kenarın uzunluğunu verir.
22,5°–67,5°–90° üçgeninde, esasında 45°–45°–90° özel üçgeni vardır. Kolaylık olması açısından bu üçgende; hipotenüse ait yükseklik uzunluğunun (dikmenin) 2√2 katı, hipotenüs uzunluğunu verir.
Takip et: @kpancar |
|
''Açılarına göre özel dik üçgenler'' Bu Blog yazısı;
Ekim 23, 2020 tarihinde dik üçgen, geometri, matematik, pisagor teoremi, üçgen kategori başlıklarında eklenmiş olup Muallim tarafından yayınlanmıştır. Ayrıca henüz yorum yapılmamış bir yazıdır. Yazımızda hatalı bir içerik olduğunu düşünüyorsanız lütfen 'kpancar@yahoo.com' mail adresimize bildiriniz. Dualarınızı bekleriz.
Matematik Konularından Seçmeler
matematik
(209)
geometri
(124)
üçgen
(49)
ÖSYM Sınavları
(46)
trigonometri
(38)
çember
(30)
fonksiyon
(28)
sayılar
(26)
alan formülleri
(25)
türev
(22)
analitik geometri
(19)
denklem
(18)
dörtgenler
(17)
limit
(16)
belirli integral
(13)
katı cisimler
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(4)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)
En Çok Okunan Yazılar
-
Fonksiyonların grafiğini çizebilmek için aşağıdaki temel adımlar uygulanır. Burada anlatılanlar, her türlü fonksiyonun grafiğini el yordamı...
-
ÖSYM'nin 15/06/2019 Tarihinde gerçekleştirdiği TYT matematik sınavı, farklı tarzda ayırt edici sorular içermekle birlikte, 2018 yılı TY...
-
Bu yazıda Esma-ül Hüsna hakkında kısaca bilgi verildikten sonra Ebced hesabı ile arasındaki ilişkiyi açıklayıp bütün 99 ismin ebced değerle...
-
Köşe koordinatları bilinen üçgenin alanını bulmak için, vektör bileşenlerin determinant kuralından yararlanılır. Determinantta SARRUS Kuralı...
-
Herhangi bir dörtgenin alanı köşegen uzunlukları ile köşegenlerin arasında yer alan açının sinüsünün çarpımının yarısı ile hesaplanır. Bura...
-
Bir doğru parçasını belli bir oranda içten veya dıştan noktanın koordinatları bulunurken o noktalar arasındaki artış miktarından yola çıkara...
-
Ehl-i Sünnet itikâdını, nazım (şiir) olarak anlatan ünlü ve önemli eserlerden biri; kuşkusuz Emâlî kasidesidir. "Bed'ül Emali...
0 yorum:
Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."
İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...