Çember ve Daire Ünitesi Konu Başlıkları

Çember, düzlemde sabit bir noktaya eşit uzaklıkta bulunan noktaların kümesinin oluşturduğu geometrik şekile verilen isimdir. Düzlemde bir çemberin çevrelediği iki boyutlu yüzeye de daire denir. Çember tanımında bahsi geçen sabit nokta, çemberin merkezidir. Çemberin merkezi ile çember üzerinde alınan herhangi bir noktayı birleştiren doğru parçasına "yarıçap", yarıçapın iki katı uzunluğa da "çap" denir.  Genellikle,yarıçap r (küçük r harfi), çap ise 2r ile gösterilir. Matematikte çevrel çemberin yarıçapını R (büyük R harfi) ile gösteririz. Bu nedenle sıradan bir çemberin yarıçapını R şeklinde büyük harfle gösterek kullanmak hatalıdır. Yarıçap ve çapların uzunlukları sabitdir. 
Çember üzerindeki iki noktayı birleştiren doğru parçasına ise "kiriş" adı verilir. Kirişlerin uzunlukları farklı olabilir. Bu anlamda, merkeze göre birbirine simetrik olan iki noktayı birleştiren doğru parçasının uzunluğu aynı zamanda çapa eşittir. Çap en uzun kiriştir. 
Çemberin iki noktası arasında kalan parçaya "çember yayı" (çember parçası) denir. Çember üzerindeki iki farklı noktadan geçen doğruya "kesen" adı verilir. Bir kesenin, çember içerisinde kalan parçasına da "kiriş" denir. 

Çember, bulunduğu düzlemi; çemberin iç bölgesi, dış bölgesi ve kendisi olmak üzere üç bölgeye ayırır. Çemberin kendisi ve iç bölgesinin birleşiminden daire oluşur.

Çemberin merkezi, merkez açının köşesidir. Çevre açının köşesi, çemberin üzerindedir. Merkez açının içinde kalan çember parçasına, "merkez açının gördüğü yay"; çevre açının içinde kalan çember parçasına, "çevre açının gördüğü yay" denir. Merkez açının ölçüsü gördüğü yayın ölçüsüne eşittir. Çevre açının ölçüsü gördüğü yayın ölçüsünün yarısı kadardır. Merkez açının kenarlarının, çemberi kestiği noktaların arasındaki yaylardan birisi "majör", yani büyük çember yayı, diğeri de "minör", yani küçük çember yayıdır. Merkez açının gördüğü yay, minör yaydır. Merkez açının ölçüsü, 0 ile 180 derece arasında, çevre açı yaylarının ölçüleri ise, 0 ile 360 derece arasındadır. Tüm çemberin ölçüsü 360 derecedir. Radyan cinsinden ölçüldüğünde 2π radyan olur. 

Çemberde açı özellikleri

Çemberde teğet ve kiriş özellikleri

Çemberde Kiriş Özellikleri

Çemberde kiriş uygulamaları

Kirişler Dörtgeni


Çembere teğet çizmek

Çemberde Teğet Özellikleri

Çemberde teğet uygulamaları

Teğetler Dörtgeni


**Çemberde kuvvet fonksiyonu

**Koordinatları verilen noktanın çembere göre kuvveti


**Çemberler yardımıyla fraktal oluşturma


Üçgenin Çevrel Çemberi ve alanı

Üçgenin çevrel çember/sinüs alan formülü

İçteğet çemberi çizilen üçgenin alan formülü

Birim Çember

**Açı Ölçü Birimleri

Sinüs teoremi ve ispatı


Çemberin çevresi ve ispatı

Çemberin çevresinin iple sarılması

**Çemberin çevresi integralle ispatı

Dairenin alanı ve ispatı

Dairede çevre ve alan özellikleri

**Dairenin alanın integralle ispatı


**Pi sayısı

**Pi sayısının tarihçesi


(**) İşaretli olanlar Fen Liseleri, Yeterlilik Sınavları, Olimpiyat/Matematik yarışmaları ve matematik meraklısı her seviye ilim aşığı için hazırlanmış olup, biraz daha ileri matematik konularını ihtiva eden matematik müfredatının daha kapsamlı olduğu alanlar için önceliklidir. 

| | | | Devamı... 0 yorum

Dairede çevre ve alan özellikleri

O merkezli ve r yarıçaplı bir dairenin çevre uzunluğunun, dairenin çap uzunluğuna (2r) oranı π sabit sayısını verir. Buna göre; Çemberin çevresi, çemberi çapı ile pi sayısının çarpımı ile bulunur. (Bkz. Çemberin çevresi ve ispatı) Dairenin alanı; pi sayısı ile dairenin yarıçapının karesinin çarpımı ile bulunur. Dairenin alanını bulabilmek için, bir düzgün çokgenin düzenli olarak kenar sayısı arttırılarak çokgen limit değerinde çembere yaklaştırılır. (Bkz. Dairenin alanı)
Dairenin çevre ve alan formülleri ve benzerlik teoremleri kullanılarak çeşitli özellikler elde edilebilir. Buna bağlı olarak daire parçaları ve yay uzunlukları hakkında da çeşitli formüller üretilebilir. Aşağıda konu ile alakalı çeşitli formüller gösterilmiştir.





| | | | Devamı... 0 yorum

Dairenin alanı integralle ispatı

Bir düzgün çokgende kenar sayısı ne kadar fazla olursa, düzgün çokgen o kadar çembere benzer. Bu durumda bir düzgün çokgende kenar sayısını sonsuza yaklaştırdığımızda, (limit değeri) düzgün çokgen artık çembere dönüşmüş olur. Dolayısıyla n kenarlı (sonsuz kenarlı) çokgenin alanı hesaplandığında, meydana gelen dairenin de alanı bulunmuş olur.  (Bkz. Dairenin Alanı) Bu şekilde dairenin alanın hesaplanmasında, limit yaklaşımı metodu kullanılır. Benzer şekilde dairenin alanı, elipsin alanında olduğu gibi integral yardımıyla da hesaplanabilir.  (Bkz. Elipsin alan ispatı) Bu yöntem ile dairenin alanı hesaplanırken; belirli integral ve açısal (kutupsal) dönüşüm kullanılır.
Yarıçapı "r" olan dairenin alanı, integral yardımıyla da hesaplanabilir. Bunun için 4 tane eş daire dilimlerinden birinin alanı, belirli integralle hesaplandıktan sonra bulunan sonuç, 4 ile çarpılarak tüm dairenin alanı hesaplanır. İntegral hesabında temel fonksiyon tek değişkene göre yazılırken, açısal (kutupsal) dönüşüm uygulanır.

Dairenin alanı ve ispatı

Dairenin alanı; pi sayısı ile dairenin yarıçapının karesinin çarpımı ile bulunur. Dairenin alanını bulabilmek için, bir düzgün çokgenin düzenli olarak kenar sayısı arttırılır. Kenar sayısı ne kadar fazla olursa düzgün çokgen o kadar çembere benzer. Dolayısıyla n kenarlı (sonsuz kenarlı) çokgenin alanı hesaplandığında, meydana gelen dairenin de alanı bulunmuş olur. 

Bir daire esasında daire dilimlerinin toplamından meydana gelmiştir. Bu daire dilimleri, yan yana hiç boşluk kalmayacak şekilde sıralandığında, bir dikdörtgen meydana gelir. Ortaya çıkan bu dikdörtgenin alanı hesaplandığında dairenin alanına ulaşılır. 

Dairenin alan hesabı için, yukarıda anlatılan özellikle ilgili olarak hazırlanmış animasyonu, aşağıdaki videodan izleyebilirsiniz. (Daire Alanı-Youtube)
Yukarıdaki örnek matematiksel olarak ifade edilirse; Bir düzgün çokgende kenar sayısını ne kadar arttırırsak, o çokgen o kadar çembere benzer. Yani çokgenin kenar sayısını sonsuza yaklaştırdığımızda, çokgen (limit değeri) artık çembere dönüşmüş olur. Bu şekilde dairenin alanı hesaplanırken, limit yaklaşımından yararlanılır. (Bkz. sinx/x limiti)

Daire alanındaki mantıkla, benzer şekilde silindirin hacmine de ulaşılır. Yani bir silindir taban dairesi baz alınarak, çok sayıda silindir dilimine ayrıldığında, bu dilimler boşluk kalmayacak şekilde dizilirse ortaya bir dikdörtgen çıkar. Silindirdeki dilim sayısı sonsuz olduğunda, silindirin toplam hacmi, ortaya çıkan dikdörtgenin alanına eşit olacaktır. Konu ile ilgili hazırlanmış silindir hacim materyalini inceleyebilirsiniz.  (Bkz. Silindirin Hacmi Materyali) 

Yarıçapı, r olan dairenin alanı, integral yardımıyla da hesaplanabilir. Bunun için 4 tane eş daire dilimlerinden birinin alanı integralle hesaplandıktan sonra, çeyrek daire diliminin alanı bulunur.  Bulunan bu sonuç, 4 ile çarpılarak tüm dairenin alanı hesaplanmış olur. İntegral hesabında açısal (kutupsal) dönüşüm uygulanır.
Daire diliminin alanı bulunurken, dilimin gördüğü merkez açının ölçüsü bilinmelidir. (Bkz. Çemberde Açılar) Bunun için ya merkez açının ölçüsü verilmeli ya da bu daire dilimini çevreleyen yayın uzunluğu bilinmelidir. Buna göre, oran-orantı yardımıyla daire diliminin alanı hesaplanır.


Çemberin çevresinin iple sarılması

O merkezli ve r yarıçaplı bir dairenin çevre uzunluğunun, dairenin çap uzunluğuna (2r) oranı π sabit sayısını verir. Buna göre; Çemberin çevresi, çemberi çapı ile pi sayısının çarpımı ile bulunur. (Bkz. Çemberin çevresi ve ispatı) Bazı durumlarda birleştirilmiş çemberlerin çevrelerinin  bir kayış ya da ip benzeri araçlarla çevrelenmesi ve gergin biçimde sarılması istenebilir. Bunların çevre uzunluğunun hesaplanmasında çemberin çevre formülü ve oluşacak çokgenlerin çevre formüllerinin toplamının bilinmesi gerekir. 
n tane eş çemberin çevresine gergin sarılan ipin uzunluğu çemberin merkezlerinin birleştirilmesi ile elde edilen n-genin çevre uzunluğu ile bir çemberin çevre uzunluğunun toplamına eşittir. Aşağıdaki şekilden de görüleceği üzere, bir çemberin ertafında sarılacak gergin ipin uzunluğu, 2πr kadardır. 
Aşağıda verilen çeşitli çemberler için çevrelerine gergin ipler sarılmıştır. Bu çemberlerin etrafına sarılan gergin iplerin uzunluklarının nasıl olacağına dikkat ediniz.

| | | Devamı... 0 yorum

Çemberin çevresi integralle ispatı

O merkezli ve r yarıçaplı bir dairenin çevre uzunluğunun, dairenin çap uzunluğuna (2r) oranı π sabit sayısını verir. Buna göre; Çemberin çevresi, çemberi çapı ile pi sayısının çarpımı ile bulunur. (Bkz. Çemberin Çevresi) Çemberin çevresi, yay uzunluğunun toplamını veren integral bağıntısı ile de hesaplanabilir. Bunun için Çember üzerinde alınan rastgele bir P noktasının kutupsal biçimi yazıldıktan sonra çemberin yay uzunluğunun toplamını veren integral yazılır. Aynı metod dairenin alanını veren bağıntı içinde kullanılır. (Bkz. Dairenin Alanı integral ispatı)
| | | | | | Devamı... 0 yorum

Çemberin çevresi ve ispatı

O merkezli ve r yarıçaplı bir dairenin çevre uzunluğunun, dairenin çap uzunluğuna (2r) oranı π sabit sayısını verir. Buna göre; Çemberin çevresi, çemberi çapı ile pi sayısının çarpımı ile bulunur. Çevre formülünün hesabı yapılırken, Archimedes’in (Arşimet) π sayısının değerini elde etmek için kullandığı yaklaşımdan yola çıkılarak ispatlama yapılabilir. Bu yaklaşımda pi sayısı şu gerçeğe dayanır: Bir çemberin çevre uzunluğu, n kenarlı düzgün kirişler ve teğetler dörtgenlerinin çevre uzunlukları arasındadır ve n arttırılarak iki çevre uzunluğu arasındaki sapma azalır. Bu gösterim, çokgenler ile çemberin çevre uzunluğu arasındaki fark yavaş yavaş tüketidiği için "tüketme yöntemi" olarak bilinir. Tüketme yöntemini kullanan Archimedes, π sayısının olduğu aralığı 3+10/71< Pi sayısı<22/7 olarak hesaplamış ve buna göre pi sayısının yaklaşık değerini de 3,14 olarak bulmuştur. 

Archimedes’in Pi saysısının bulunması için gösterdiği bu yaklaşımı, çemberin çevresi için kullandığımızda, çemberin içine çizilen kirişlerin oluşturduğu düzgün çokgenlerin kenar sayısı, ne kadar çok arttırılırsa çokgenin çevresi ile çemberin çevresi birbirine o kadar yakın olur. Buna göre düzgün çokgenin kenar sayısı, sonsuza yaklaştığında ise düzgün çokgen, artık çembere dönüşmüş olur ki bu durumda düzgün çokgenin çevresinin limit değeri, çemberin çevresini verir.


Çemberin çevresi, yay uzunluğunun toplamını veren integral bağıntısı ile de hesaplanabilir. Bunun için Çember üzerinde alınan rastgele bir P noktasının kutupsal biçimi yazıldıktan sonra çemberin yay uzunluğunun toplamını veren integral yazılır. Aynı metod dairenin alanını veren bağıntı içinde kullanılır. (Bkz. Dairenin Alanı integral ispatı)

O merkezli, r yarıçaplı dairede AOB merkez açısının gördüğü yay uzunluğunun ölçüsü |AB|;  oran ve orantı yardımıyla bulunur. Daireyi sınırlayan çember, ölçüsü 360° olan bir yay olarak kabul edilebilir. Buna göre orantı yapılırsa merkez açıya karşılık gelen yayın uzunluğu bulunmuş olur.



Aşağıdaki Yazılar İlginizi Çekebilir!!!

En Çok Okunan Yazılar