Sinüs teoremi ve ispatı

Sinüs teoremi, bir üçgende (kirişler üçgeni) bir kenar ve bu kenar karşısındaki açının sinüsleri oranı sabittir. Bir açının sinüsü trigonometri bilgisinden hatırlanacağı üzere, dik açılı üçgenlerde dik olmayan bir açının karşısında kalan dik kenar ile hipotenüsün (dik açının karşısında kalan kenarın) birbirine oranıdır. Kısaca açının sinüsü, karşı dik kenar uzunluğunun hipotenüse oranıdır. Sinüs teoremi, bir açı ve iki kenar verildiğinde; bilinmeyen bir açıyı bulmak veya iki açı ve bir kenar verildiğinde de bilinmeyen bir kenar uzunluğunu bulmak için oldukça yararlı bir teoremdir.
ABC üçgenine O merkezli bir çevrel çember çizelim. Eğer |OB|=|OC|=R ve üçgenin kenarlarını çizersek m(BOC)=2A olur. Eğer OE⊥BC olmak üzere bir E noktası seçilirse; |OE|=R.sin(90−A)=R.cosA olur. O halde A(BOC)=(a.R.cosA)/2 olur. Ayrıca sinüs alan bağıntısından A(BOC)=(R.R.sin2A)/2 olmalıdır. Bu elde edilen iki denklemi birbirine eşitleyip yazarsak;
 (a.R.cosA)/2=(R.R.sin2A)/2 eşitliği bulunur. 
Eşitlikte trigonometri toplam ve fark formüllerinden yararlanarak sin2A yerine sin2A=2.cosA.sinA yazıp gerekli sadeleştirme yapılırsa a/sinA=2R olur. Burada uygulanan tüm işlemleri diğer iki üçgen olan AOC ve AOB üçgenleri için de çizerek yapabileceğimizden sinüs teoremi elde edilmiş olur. Bu şekilde a/sinA=b/sinB=c/sinC=2R sinüs teoremini ispatlamış oluruz. 
Aynı teorem üçgenin temel alan formülü yardımıyla da hesaplanabilir. Üçgenin alanı, taban uzunluğu ve o tabana ait yüksekliğin çarpımının yarısı kadardır. Bu formülü kullanarak oluşturulan eşitliklerden de sinüs teoremi elde edilir.

Burada bulduğumuz eşitliğin, çevrel çemberin çapına eşit olduğunu göstermek için, çemberde açılardan yararlanabiliriz. Çevrel çemberi çizilen üçgende, ABC açısı ile ADC açısı, çember üzerinde aynı yayı gördükleri için ölçüleri birbirine eşittir. Çapı gören çevre açının ölçüsü, 90 derece olduğundan; ACD açısının ölçüsü, 90 derecedir. Buradan hareketle, ADC açısının yani B açısının sinüs değerini, dik üçgenden yazdığımız zaman, yukarıda ispatladığımız sinüs teoremini elde ederiz. Üçgenin çevrel çemberinin yarıçapı R olmak üzere,  bulduğumuz sinüs teoremi eşitliği, 2R ye de eşit olmuş olur.

Üçgenin alan bağıntılarından çevrel çember çapı ile ilgili olan alan bağıntısı kullanılarak da sinüs teoremi ispatı yapılabilir. Yalnız burada birbirine bağlı eşitliklerin olması sebebiyle, bu ispat biçiminde tekrarlama ihtimali akla gelebilir. Aşağıda üçgenin alan teoremi kullanılarak ispatlama yapılmıştır.
Sinüs teoreminin ispatlamalarında kullandığımız, üçgenin alan bağıntıları ile ilgili var olan ispatları da ilgili bağlantıyı tıklayarak inceleyebilirsiniz. (Bkz. Üçgende Alan Bağıntıları)

Aşağıdaki Yazılar İlginizi Çekebilir!!!

En Çok Okunan Yazılar