Ebob-Ekok Oluşturucu (Python Kod)

"Ebob-Ekok Oluşturucu" Python programı, özellikle ortaokul seviyesindeki öğrenciler için matematiksel kavramların daha iyi anlaşılmasına yardımcı olmak amacıyla geliştirilmiştir. Bu yazılım, rastgele seçilen sayılarla EBOB (En Büyük Ortak Bölen) ve EKOK (En Küçük Ortak Kat) hesaplamalarını otomatikleştirerek, öğretmenlerin ve öğrencilerin alıştırma yapmalarını kolaylaştırır. Bu programın temel amacı, öğrencilerin EBOB ve EKOK kavramlarını uygulamalı bir şekilde öğrenmelerini sağlamaktır. Öğrenciler, rastgele oluşturulan sayı gruplarının asal çarpanlarını ayırarak bu değerleri hesaplamayı öğrenirler. Ayrıca, programın çıktısı olan PDF dosyaları, öğretmenlerin sınıf içi etkinliklerde veya ödevlerde kullanabileceği alıştırma sayfaları sunar. 
Çarpan ve Katlar konusunda EBOB ve EKOK işlemleinin daha iyi anlaşılması için 300 den küçük sayılar arasından rasgele sayılar seçerek, ikili ya da üçlü sayı grupları oluşturup, bunların EBOB - EKOK değerlerinin bulunması şeklinde alıştırma sayfasını oluşturan PYTHON kodlaması aşağıda verilmiştir. Program arayüzü aşağıdaki gibidir: 
Kodlamada istediğiniz şekilde özelleştirmelerde bulunabilir, yeni özellikler ve iyileştirmeler yapabilirsiniz. Programda en fazla 100 kadar işlem oluşturulabilmekte ve sayı grupları 2'li veya 3'lü grup olarak seçilebilmektedir. 
Program çıktısı A4 sayfa düzenine göre hazırlanmıştır. Programın Python kodu aşağıdaki gibidir. Aşağıdaki kod düzenini kopyalayarak üzerinde istediğiniz gibi değişikliklikler yapabilirsiniz. Özellikle ortaokul kademesinde alıştırma yaprakları oluşturmada program büyük kolaylık sağlayacaktır. Program sayesinde hazırlanan etkinlikler yardımıyla öğrenciler, öğretmen rehberliğinde sınıf içi etkinliklerde alıştırmalarla EBOB ve EKOK hesaplamalarını öğrenebilirler. Ayrıca evde yapacakları ödevlerle konuyu pekiştirme imkânı bulurlar. Sınav hazırlığı sürecinde de bu pratik alıştırmalar sayesinde konuyu daha iyi anlama fırsatı yakalarlar. Öğretmenler ise sınıf seviyesine uygun zorlukta, özelleştirilmiş alıştırmalar hazırlayarak öğrencilerin ihtiyaçlarına yönelik destek sağlayabilirler. Kadir PANCAR
| | | | | Devamı... 0 yorum

Asal çarpan Hesaplama Modülü (Python Kod)

Asal sayı, yalnızca 1 ve kendisi olmak üzere iki pozitif böleni olan bir doğal sayıdır. Bir sayının asal sayı olabilmesi için 1’den büyük olması ve kendisinden başka hiçbir sayıya tam bölünmemesi gerekir. En küçük asal sayı 2’dir ve aynı zamanda tek çift asal sayıdır. 1 asal sayı olarak kabul edilmez, çünkü yalnızca bir pozitif böleni vardır. Asal sayılar, matematikte sayıların yapı taşları olarak kabul edilir ve diğer doğal sayılar bu asal sayıların çarpımıyla elde edilebilir. Asal çarpan, bir sayının asal olan çarpanlarına denir. Örnek olarak 20 sayısının asal çarpanları 2 ve 5 tir. 1, 4, 10, ve 20 ise 20 sayısını tam olarak böldüğü halde asal çarpan değildir. 
Fibonacci sayısı, Fibonacci dizisinde yer alan bir sayıdır. Bu dizi, 1 ile başlar ve her sayı kendisinden önce gelen iki sayının toplamı olarak elde edilir. Yani dizinin ilk terimi 1 sonraki terim 1’in toplamı olan 1, üçüncü terimi 1 ile 1’in toplamı olan 2, dördüncü terimi 1 ile 2’nin toplamı olan 3 şeklinde devam eder. Bu şekilde oluşan sayı dizisi 1, 1, 2, 3, 5, 8, 13, 21, 34, 55... şeklindedir. Fibonacci sayıları hem matematikte hem de doğada sıkça karşımıza çıkar. Bitkilerin yaprak dizilimleri, çiçeklerin yapısı ve bazı hayvanların büyüme düzenleri gibi doğal örneklerde bu sayıların izine rastlanabilir. Ayrıca bilgisayar bilimleri ve algoritmalar gibi teknik alanlarda da kullanılır. 
Yukarıda anlatılan matematiksel tanımlara benzer şekilde, sayı özelliklerini görmek amacıyla bir program hazırlama gereği duyduk. Buna göre “Asal Çarpan Hesaplama Modülü” adlı Python uygulaması, öğrencilerin ve matematik meraklılarının bir sayının özelliklerini detaylı biçimde inceleyebilecekleri çok işlevli bir modül olarak tasarlanmıştır. Bu programın odak noktası, kullanıcı tarafından girilen pozitif bir tam sayının asal çarpanlarını ve daha birçok matematiksel niteliğini hesaplamak ve göstermek, böylece sayılarla ilgili kavrayışı derinleştirmektir. Programın işlevleri arasında şunlar yer alır: Verilen sayının asal olup olmadığını belirleme, Sayının asal çarpanlarını bulma, Sayının pozitif ve negatif tüm bölenlerini listeleme, Asal olmayan pozitif bölenleri ayırma, Tek ve çift pozitif bölenleri tespit etme, Pozitif bölenlerin toplamını hesaplama, Pozitif bölenlerin çarpımını bulma, Sayının Fibonacci dizisinde olup olmadığını kontrol etme, Sayının “mükemmel sayı” olup olmadığını belirleme, Sayının palindrom (tersiyle aynı) olup olmadığına bakma, Sayının karekök değerini hesaplama, Sayının asal çarpanlarının üs gösterimli biçimini hazırlama  
Teknik yapısı bakımından program, Python’un standart ve yaygın kütüphanelerini kullanır. Örneğin math kütüphanesi karekök işlemleri ve sayısal hesaplamalar için kullanılırken, tkinter kütüphanesi grafiksel kullanıcı arayüzünü (GUI) oluşturmak için devreye girer. Burada program kodlarını kullanarak gerekli arayüz iyileştirmelerini yapabilirsiniz. Arayüz penceresi kullanıcıdan bir sayı girişi alır ve “Hesapla” düğmesine basıldığında tüm bu özellikleri hesaplayıp ekranda uygun metin kutularında gösterir. Program ayrıca girilen sayının asal çarpanlarını üs gösterimiyle biçimlendirir. Bu, öğrencilerin asal çarpanlara ayırma işlemini hem sayı düzeyinde görmelerine hem de sembolik olarak kavramalarına yardımcı olur.  
Amaç açısından bu modülün temel hedefi, sayılarla ilgili birçok kavramı tek bir uygulamada kapsayarak, kullanıcıların asal çarpanlara ayırma, bölenler, mükemmel sayı, Fibonacci, palindrom gibi kavramları bir bütünlük içinde öğrenmesini sağlamaktır. Öğrencilerin soyut kavramları somut örneklerle görerek pekiştirmesini, sayısal düşünme becerilerini geliştirmesini destekler. Aynı zamanda öğretmenler için de derste anlatılan teoriyi uygulamaya dönüştürecek bir yardımcı rol üstlenir. Kullanım açısından uygulama oldukça kullanıcı dostudur. Kullanıcı, arayüzde bir sayı girer, “Hesapla” butonuna basar; program da anında sayının tüm yukarıda sayılan özelliklerini hesaplayıp ekranda gösterir. Hatalı ya da negatif giriş yapıldığında uygun uyarılar verilir. Böylece hem öğretmen tarafından ders materyali olarak hem de öğrencilerin bireysel alıştırmaları için kullanışlı bir araç haline gelir.  
Anlatılan sayı özelliklerini hesaplayan Python kodlu matematik programı, görseli aşağıda verilmiştir. Resmi büyütüp yazılımın özelliklerini inceleyebilirsiniz. Programın "exe" formatlı hali ve açık kaynak kodu da ekli dosyada ilave edilmiştir. Derslerinizde kullanabilirsiniz. Kadir PANCAR
 

Asal Sayılar ve Bölen Durumları

Matematik öğretmeni Mehmet Arslan Hocamızın kendi el yazısı ile oluşturduğu, asal sayı ve bölen sayıları için örnek problemlerin ve özelliklerin oluşturduğu karalamaları sizinle paylaşıyoruz.Güzel el yazısı ve kısa özeti için kendisine teşekkürü bir borç biliriz. Yazımız gayet okunaklı olduğu için ayrıca bir açıklamaya gerek duymadan bu şekliyle istifade etmenizi umuyoruz.

Bölünebilme Kuralları

Bölünebilme Kuralları, matematikte sayıların 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 17, 19, 25, 36 gibi sayılara kalansız olarak bölünüp bölünemediklerini, bölme işlemi yapmadan kolayca anlamaya yardımcı olan kurallarıdır. En sık kullanılan 2, 3, 4, 5, 6, 8, 9, 10, 11 sayıları ile kalansız bölünebilme işlemleridir.  Bu sayılara tam bölünebilme için belli alışılmış kurallar vardır.

Christian Goldbach ve Goldbach Kestirimi

Sayılar teorisi konusunda çalışmalarıyla ünlü Rus matematikçi. Uzun yıllar matematikçileri uğraştıran ve halen daha çalışmaları sorgulanan çözüme kavuşturulmaya çalışılan acayip bir bilim insanı. Goldbach, 18 Mart 1690’da Rusya’nın Konigsberg (şimdiki Rusya, Kaliningrad) şehrinde doğmuştur. 1725 yılında St. Petersburg’da tarih ve matematik profesörü olmuştur. 1728 yılında 2. Peter’e özel dersler vermek amacıyla Moskova’ya yerleşmiş, burada bir süre kaldıktan sonra Avrupa’ya gitmiştir. Avrupa’da, dönemin önemli matematikçileriyle görüşmek üzere dolaşmış, Leibniz, Bernoulli, De Moivre ve Hermann gibi matematikçilerle tanışmıştır. Goldbach’ın önemli çalışmaları Sayılar teorisi üzerinedir. Nerdeyse tüm akademik başarıları, Sayılar teorisi üzerine yaptığı çalışmalardan ve yayınladığı makalelerden dolayıdır. 

Goldbach, çalışmalarında dönemin ünlü sayı kuramcısı Euler’le sürekli diyalog halinde olmuştur. Matematikçiye asıl ün kazandıran çalışması, asal sayılar ile ilgili öne sürdüğü varsayımdır. Goldbach’a göre “2’den büyük her çift sayı, iki asal sayının toplamı olarak ifade edilebilir.” Goldbach, bu varsayımından 1742’de Euler’e gönderdiği ünlü mektubunda bahseder. Goldbach asal sayılarla ilgili olarak ayrıca, her tek sayının üç asal sayının toplamı olduğunu da söylemiştir (Goldbach hipotezi) Ancak bu iki varsayımıyla ilgili olarak herhangi bir ispat sunmamıştır. Goldbach’ın birinci varsayımı hala doğruluğu kanıtlanmamış bir teori olarak görülmesine rağmen, ikinci varsayımı 1937’de Vinogradov’un çalışmaları sonucu ispatlanmıştır. Goldbach ayrıca, Sonlu toplamlar, Eğriler teorisi ve Denklemler teorisi üzerine de çalışmıştır.20 Kasım 1764’de Moskova’da ölmüştür.[1]


 
Goldbach hipotezi 1742'de Goldbach, Euler'e yazdığı bir mektupta "2'den büyük her çift sayı, iki asal sayının toplamı şeklinde ifade edilebilir" önermesinin, ya doğru olduğunu ispatlamasını ya da bunu sağlamayan bir örnek göstererek yanlış olduğunu ispatlamasını istedi. Goldbach kestirimi olarak bilinen bu hipotezle asal sayılar dünyasına yeni bir heyecan geldi. Bu heyecan o gün bugündür tüm matematik severleri sardı. Yine de henüz bir cevap bulunamadı. Bu varsayım daha doğrusu kestirim en orjinal haliyle şöyle ifade edilir. ...En azından 2'den büyük her sayı üç asal sayının toplamdır...Goldbach burada 1 sayını da asal kabul etmektedir. (Bu konvansiyon artık terkedilmiştir.) (1 sayısı niçin asal değildir: Çünkü bir asal sayı başka bir asal sayıyı asla tam bölmez. Oysa 1 sayısı diğer asalları da tam böler.)Kuvvetli ikil varsayım, 3'ten büyük her çift doğal sayının iki asal sayının toplamı olarak ifade edilebileceğini öne sürer. Faber and Faber adli şirket bu sanının doğru olduğunu 20 Mart 2000 ve 20 Mart 2002 arasındaki 2 yıllık sürede kanıtlayabilecek ilk kişiye 1.000.000 Amerikan doları ödül vaat etmiştir, fakat halen ispatsız olduğu üzere bu ödülü de kazanan olmamıştır. (2010) [2]

[1] http://tr.wikipedia.org/wiki/Christian_Goldbach

[2] http://www.biltek.tubitak.gov.tr/gelisim/matematik/problemler.htm#goldbach

G.Friedrich Bernhard Riemann

(17 Eylül 1826 - 20 Temmuz 1866), analiz ve diferansiyel geometri dalında çok önemli katkıları olan Alman matematikçidir. Söz konusu katkılar daha sonra izafiyet teorisinin geliştirilmesinde önemli rol oynamıştır. Bu matematikçinin ismi aynı zamanda zeta fonksiyonu, Riemann hipotezi, Riemann manifoldları ve Riemann yüzeyleri ile de bağlantılıdır. Almanya'da Dannenberg yakınlarındaki Hanover Krallığının Breselenz kasabasında doğan matematikçinin babası Friedrich Bernhard Riemann idi. Bernhard Riemann altı çocuklu bir ailenin ikinci çocuğuydu. 
Riemann, 1840 yılında büyükannesi ile yaşamak ve Lyceum'u ziyaret etmek için Hanover'e gitti. Büyükannesinin 1842 yılındaki vefatından sonra Lüneburg'daki Johanneum'a giden Riemann, 1846'da yani 19 yaşında Göttingen Üniversitesi'nde filoloji ve teoloji çalışmaya başladı. En küçük kareler yöntemini anlatan matematikçi Gauss'un derslerine katıldı. 1847 yılında Riemann'ın babası ona teolojiyi bırakıp matematik çalışması için izin verdi. 1847 yılında Berlin'e gitti. Burada Jacobi, Dirichlet veya Steiner ders veriyordu. Berlin'de iki yıl kalan matematikçi 1849 yılında Göttingen'e döndü. 
Riemann ilk dersini 1854'te verdi ve bu dersle sadece Riemann geometrisinin temellerini kurmakla kalmadı aynı zamanda daha sonra Einstein'in izafiyet teorisinde kullanacağı yapıların da temellerini attı. 1857'de Götingen Üniversitesi'nde özel profesörlük kademesine terfi etti ve 1859'da profesör oldu. 1862 yılında Elise Koch ile evlendi. Selasca, İtalya'ya doğru gerçekleştirdiği üçüncü seyahatte hayata gözlerini yumdu. Riemann hipotezi (Riemann zeta hipotezi olarak da bilinmektedir), matematik alanında ilk kez 1859 yılında Bernhard Riemann tarafından ifade edilmiş fakat günümüze kadar çözülememiş problemlerden biridir.Bilindiği gibi asal sayılar düzenli bir dağılıma sahip değiller. 
Alman matematikçi G.F.B. Riemann (1826 - 1866) asal sayıların dağılımlarının Riemann-Zeta adını verdiği bir fonksiyon ile çok yakından ilişkili olduğunu gözlemledi. Bazı pozitif tamsayıların kendilerinden küçük ve 1'den büyük tamsayıların çarpımı (örn. 2, 3, 5, 7, ...) cinsinden yazılamamak gibi bir özelliği vardır. Bu tür sayılara Asal sayılar denir. Asal sayılar, hem matematik hem de uygulama alanlarında çok önemli rol oynar. Asal sayıların tüm doğal sayılar içinde dağılımı bariz bir örüntüyü takip etmemektedir.
Riemann toplamı ile ilgili ayrıntılı bilgiye ulaşmak için yazımıza tıklayabilirsiniz. (Bkz. Riemann Toplamı)

Aşağıdaki Yazılar İlginizi Çekebilir!!!