Sayılabilir Sonsuzluk Kavramı

Sonsuz kavramı, matematikte farklı bir tanımlamadır. "Lemniscate", “sonsuzluk” ya da “sekiz” şeklinde (∞) bir eğriyi ifade eden genel bir terimdir. Kelime, Latince lēmniscātus (“kurdeleli”) ve Yunanca λημνίσκος (lēmniskos) (“kurdele”) sözcüklerinden gelir. Genellikle matematik ve fizikte herhangi bir sonu olmayan kavramları veya sayıları tanımlamak için kullanılır. Matematiksel denklemi: (x2+y2)2−cx2−dy2=0 şeklinde olup d<0 olduğunda eğri bir lemniskattır. Proclus, Johann ve Jakob Bernoulli, Gerono, Cassini gibi matematikçiler çeşitli lemniscate eğrileri tanımlamıştır.
Matematikte “sonsuz” kavramı bazen sayı gibi ele alınır; örneğin “sonsuz sayıda terim” ifadesinde olduğu gibi burada sayılamayacak kadar çoklukta bir sayı adedi olduğunu ifade eder. Ancak gerçek sayılar kümesinde sonsuzluk bir sayı olarak yer almaz. Bazı sayı sistemlerinde ise "sonsuz küçük" değerler tanımlanabilir. Sonsuz küçük değer, sıfırdan büyük ama her gerçek sayıdan daha küçük olan bir önemsenmeyecek kadar küçük olan bir niceliktir. Yani “çok çok küçük ama sıfır olmayan” bir sayı gibi düşünülebilir. Matematikte, limit kavramı içindeki ε (epsilon) genellikle böyle "Sonsuz küçük" değeri temsil eder. Sonsuz küçük değer olanın çarpmaya göre tersi alınırsa ε’nin tersi (1/ε gibi) çok büyük bir sayı olur ve bu bir sonsuz sayı olarak düşünülebilir. Buradaki sonusz kavramı, normal sayılarla ifade edilemez; sürekli artan bir niceliği temsil eden ve büyüklüğünün bir sınırı olmayan değerdir.
19. ve 20. yüzyıllarda yaşamış matematikçiler bu alanda çalışmalar yapmıştı. Özellikle Georg Cantor, sonsuz ve sonsuz kümeler üzerine önemli çalışmaları ile bilinir. (Bkz. Georg Cantor) G. Cantor’un kuramına göre farklı boyutlarda sonsuz kümeler vardır. Örneğin, tamsayıların oluşturduğu küme “sayılabilir sonsuz” olarak adlandırılırken, gerçek sayıların oluşturduğu küme “sayılamayan sonsuz” olarak tanımlanır. Bu kavramlar başlangıçta anlaşılması zor ve hatta kabul edilmesi güç olsa da, günümüzde küme teorisi, analiz ve matematiksel mantığın temel taşlarından biri hâline gelmiştir. Matematikte bir küme sonsuz ise, elemanlarını tek tek sayarak sona ulaşmak mümkün değildir. Örneğin doğal sayılar kümesi (1, 2, 3, …) sonsuzdur. Cantor, sonsuzun yalnızca bir sıfat olmadığını, aynı zamanda ölçülebilir bir büyüklük olabileceğini göstermiştir. Eğer bir küme, doğal sayılarla bire bir eşleştirilebiliyorsa sayılabilir sonsuzdur; bu yapılamıyorsa sayılamayan sonsuzdur. Örnek vermek gerekirse, tüm tam sayılar ve rasyonel sayılar sayılabilir sonsuz kümelerdir, ancak gerçek sayılar sayılamaz sonsuzluktadır; bu nedenle gerçek sayılar daha büyük bir sonsuzluk olarak kabul edilir. Tüm çift sayılar her doğal sayıya bir çift sayı atayarak doğal sayılarla eşlenebilir. Rasyonel sayılar da bir listeye dizilebilir; böylece rasyonel sayılar sayılabilir sonsuz olarak kabul edilir. Buna göre doğal sayıları listeleyebilirsiniz, ama gerçek sayıları listeleyemezsiniz. G. Cantor’dan önce matematikçiler, bazı sonsuz kümelerin doğal sayılarla bire bir eşlenebileceğini fark etmelerine rağmen bunu kuramsallaştıran Cantor olmuştur. 
Doğal sayılar N={0,1,2,3,4......} ile pozitif tamsayılar aynı kardinaliteye sahiptir. Eşleme fonksiyonu şöyle yazılabilir: f(n) = n+1  
Doğal sayılar ile çift sayılar aynı kardinaliteye sahiptir. Eşleme fonksiyonu şöyle yazılabilir:  
Tüm tamsayılar da doğal sayılar ile aynı kardinalitededir. Eşleme fonksiyonu şöyle yazılabilir: n çift ise f(n)=
G. Cantor, 1872’de rasyonel sayılar kümesi üzerinde çalıştı. Rasyonel sayılar, doğal sayıları da içerir çünkü her tam sayı n, n/1 olarak yazılabilir. Her iki rasyonel sayı arasında sonsuz başka rasyonel sayı vardır. Görünüşte rasyonel sayılar doğal sayılardan çok daha fazla gibi görünse de, Cantor bunların sayıca eşit olduğunu kanıtlamıştır. Bu, rasyonel sayıları bir matrise yerleştirip diyagonal bir şekilde listeleyerek yapılabilir; bu sayede rasyonel sayılar doğal sayılarla bire bir eşlenebilir. Bu tür kümelere sayılabilir sonsuz kümeler denir ve kardinalitesi  (alef sıfır) ile gösterilir.   
Her rasyonel sayı iki tam sayının a ve b aralarında asal tam sayılar olacak biçimde a/b şeklinde yazılmasıyla oluşturulabilir. Buna göre bu sayı çiftleri bir ızgara gibi spirale yerleştirilir ve doğal sayılara birebir eşlenir. Böylece  yoğun olmasına rağmen sayılabilir olur. Bunu izah ederken tüm tam sayı çiftlerini (a,b) iki boyutlu bir koordinat düzleminde düşünebiliriz. Her nokta bir rasyonel sayıyı temsil eder (geçerli olması için b ≠ 0 ve a, b aralarında asal olmalı). Örneğin: (1,2) noktası →1/2 ve (−3,5) noktası →-3/5 ve (0, 0) noktası → 0 sayısını temsil edecek şekilde yerleştirelim. Bu şekilde devam ettiğimizde düzlemdeki tüm noktaları bir sprial (örneğin merkezden dışa dönen bir yol) boyunca tek tek sıralayabiliriz. Böylece her (a,b) çifti, spiraldeki bir sıraya (doğal sayıya) karşılık gelir. Bu spiral yöntemiyle her nokta (a,b) sadece bir tane doğal sayıya denk gelir. Yani iki farklı nokta (örneğin (1,2) ve (3,4)) aynı doğal sayıya karşılık gelmez. Bu yüzden birebir eşleme vardır. Spiral her noktaya gider ama her nokta bir rasyonel sayıyı temsil etmez (bazıları geçersizdir, örneğin b=0 noktası için bir karşılık bulunamaz.) Yani bazı doğal sayılar “boş” kalır ama bu problem değildir, çünkü bizim için önemli olan birebir eşlemenin olmasıdır tam kapsama gerekli değildir. Sonuç olarak |Q| ≤ |N| olduğunu görürüz. Bu eşleme sayesinde rasyonel sayıların kümesi, doğal sayılardan daha fazla değil (en fazla o kadar) eleman içerir. Ayrıca, her doğal sayı da bir rasyonel sayıdır (örneğin 3 = 3/1), dolayısıyla |N| ≤ |Q| de doğrudur. Cantor–Bernstein Teoremi’ne göre bu |Q| ≤ |N| ve  |N| ≤ |Q| iki koşulu varsa o zaman |Q| = |N| olduğunu söyleyebiliriz. Sonuç olarak Rasyonel sayılar sonsuzdur, ama “doğal sayılar kadar” sonsuzdur. Yani sayıca aynı büyüklüktedirler — her rasyonel sayı bir doğal sayıyla eşleştirilebilir.
G. Cantor’un bir sonraki sorusu, gerçek sayıların kardinalitesi olmuştur. Gerçek sayılar, sürekli sayı doğrusu üzerindeki tüm noktaları içerir, irrasyonel sayıları da kapsar. Cantor, gerçek sayıların doğal ve rasyonel sayılardan “daha büyük” olduğunu kanıtladı. Bunu, diyagonal argüman ile gösterdi: 0 ile 1 arasındaki gerçek sayılar bir listeye alınmış olsa bile, listedeki her sayının ondalık basamaklarından yeni bir sayı türetmek mümkündür. Bu yeni sayı, listedeki hiçbir sayı ile aynı olmayacağı için, gerçek sayılar sayılamayan sonsuzluktur. Gerçek sayıların kardinalitesi kümelerin sürekliliği (c) olarak adlandırılır.
G. Cantor’un en dikkat çekici sonucu gerçek sayılar kümesinin doğal sayılarla bire bir eşlenemeyeceğini göstermesidir. Yani doğal sayılardan daha büyük bir sonsuzluk kavramı vardır. Bu düşünceyi destekleyen en ünlü kanıt Cantor’un diyagonal argümanıdır. Diyagonal argümanın özeti şöyledir: Varsayalım ki 0 ile 1 arasındaki tüm gerçek sayılar bir liste halinde yazılmış olsun. Bu dizide yer almayan bir sayı oluşturmak için listedeki her sayının i’inci ondalık basamağından farklı bir rakam seçerek yeni bir ondalık sayı oluşturulur. Bu yeni sayı listedeki hiçbir sayı ile aynı olamaz. Sonuç olarak, [0,1] aralığındaki gerçek sayılar listeye alınamaz; yani gerçek sayılar kümesi eşleştirme yapılamadığından gerçek sayılar "sayılamayan" sonsuzdur.
 
1874’te Cantor, 1 uzunluğundaki bir doğru ile 1 kenar uzunluğundaki bir kare arasındaki noktaların bire bir eşlenip eşlenemeyeceğini araştırdı. Sonuç, doğru ve karedeki noktaların aynı kardinaliteye sahip olduğuydu. Bu düşünce, küp veya n-boyutlu hiper-küp için de geçerlidir. Cantor bu sonucu görünce şaşkınlığını gizleyememiş ve “Görüyorum ama inanamıyorum!” demiştir. Cantor çalışmalarında farklı kardinal sayıları tanımladı ve ilkini  diğerlerini  olarak gösterdi.
  
G. Cantor, doğal sayılar () ve gerçel sayılar () kümesi arasında başka bir büyüklükte sonsuz küme olup olmadığını merak etti. Yani şöyle soruyordu: Doğal sayılar sayılabilir sonsuzdur ve kardinalitesi ile gösterilir. Gerçel sayılar sayılamayan sonsuzdur ve kardinalitesi c (süreklilik kardinalitesi) ile gösterilir.  olacak şekilde bir kardinal sayı var mıdır? Yani doğal sayılar ve gerçel sayılar arasında “orta büyüklükte” bir sonsuzluk var mı? Bu soru, Cantor’un zamanında sürekli hipotez (continuum hypothesis) olarak adlandırıldı. Hipotez, şöyle özetlenebilir: “Her sonsuz küme ya sayılabilir sonsuzdur  ya da gerçel sayılarla aynı kardinaliteye sahiptir (c). Arada başka bir sonsuzluk yoktur.” Cantor’un matematiksel araçları bu hipotezi çözmek için yeterli değildi. 1940’ta Kurt Gödel, hipotezin çürütülemeyeceğini yani standard matematik (ZFC aksiyomları) ile yanlışlanamayacağını gösterdi. 1963’te Paul Cohen, hipotezin kanıtlanamayacağını yani standart matematikle doğrulanamayacağını gösterdi. Böylece sürekli hipotez, modern matematikte bağımsız bir problem hâline geldi.
 
Georg Cantor’un bu kuramı, küme teorisi ve matematiğin temelleri açısından bir dönüm noktasıdır. Sayılamayan sonsuzluk kavramı analizde, topolojide ve mantıkta merkezi bir rol oynar. Sonsuzlukların farklı katmanlarının olması, matematiksel gerçeklik anlayışını değiştirmiştir. Bilgisayar biliminde diyagonal yöntemleri, Kurt Gödel’in eksiklik teoremleri ve Alan Turing’in durdurma problemi gibi çalışmalara temel oluşturmuştur. Başlangıçta Cantor’un fikirleri bazı matematikçiler tarafından felsefi sebeplerle reddedilmiş olsa da, günümüzde kuantum mekaniğinden karmaşık sistemlerin analizine kadar “sonsuzluk” ve “küme büyüklüğü” kavramları kritik hâle gelmiştir. Veri bilimi ve algoritma teorisinde sayılabilir ve sayılamayan kümeler arasındaki fark analizlerde kullanılmaktadır. 
 
Sonuç olarak, sonsuzluk kavramı sadece “sınırı olmayan, sayılamayan, çok büyük” bir kavram değildir; farklı türleri vardır ve bu türler birbirinden ciddi biçimde ayrılır. Georg Cantor sayesinde biliyoruz ki sonsuzluk tek bir büyüklük değildir; bazı sonsuz kümeler diğerlerinden daha büyüktür. 19.–20. yüzyıl dönümünde matematikçiler “sonsuzluk” kavramını ciddiye almaya başladılar. Bu sonsuzluk kavramı keşfi, gerçek sayılar, fonksiyonlar ve kümeler teorisinde büyük ilerlemelere yol açmasına rağmen aynı zamanda çelişkiler ve paradokslara neden olmuştur. Ünlü sonsuzluk paradokslarından ikisini burada açıklayarak yazıyı bitirelim. 
 
Hilbert’in Oteli, sonsuzluk kavramının tuhaf sonuçlarını göstermek için geliştirilen ünlü bir düşünce deneyidir. Bu otelde sonsuz sayıda oda vardır ve her oda dolu durumdadır. Buna rağmen, yeni bir misafir geldiğinde yine de ona yer açmak mümkündür.Otelin yöneticisi, her misafirin bir sonraki odaya geçmesini ister:1 numaralı odadaki kişi 2 numaralı odaya,2 numaralı odadaki kişi 3 numaralı odaya,3 numaralı odadaki kişi 4 numaralı odaya geçer,ve bu düzen sonsuza kadar devam eder.Böylece 1 numaralı oda boşalır ve yeni gelen misafir rahatça yerleşebilir. Aynı mantıkla, eğer sonsuz sayıda yeni misafir gelirse, mevcut misafirler odalarını ikiyle çarparak (1→2, 2→4, 3→6 …) yeni odalara geçer; böylece tüm tek numaralı odalar yeni misafirlere ayrılır.Bu düşünce deneyi, sonsuzluk kavramının sezgilerimize ters düşen yönlerini ortaya koyar: Otel tamamen dolu olsa bile, hala yer açılabilir; çünkü sonsuz bir otelde son oda yoktur. Bu da, matematikteki “sonsuzun bitmeyen” ve “sınır tanımayan” doğasını çarpıcı bir şekilde gösterir.
 
Zeno’nun paradoksu, hızlı koşucu Aşil ile yavaş bir kaplumbağa arasındaki hayali bir yarışı anlatır. Aşil, kendine güvendiği için kaplumbağaya küçük bir başlangıç avantajı verir. Zeno’ya göre, bu durumda Aşil kaplumbağayı asla yakalayamaz. Çünkü Aşil önce, kaplumbağanın başladığı noktaya ulaşmak zorundadır. Ancak Aşil o noktaya geldiğinde, kaplumbağa biraz daha ilerlemiş olur. Aşil bu yeni mesafeyi kat ederken, kaplumbağa yine az da olsa daha ileriye gider. Bu süreç sonsuza kadar sürer: Aşil her seferinde aradaki mesafenin bir kısmını kapatır ama kaplumbağa hep biraz öndedir. Bu nedenle, Zeno’ya göre, Aşil kaplumbağayı yakalamak için sonsuz sayıda adım atmak zorunda kalır; bu da sanki asla yetişemeyecekmiş gibi görünür. Paradoks, sonsuz bölünme ve hareketin doğası üzerine düşünmeye yönelten klasik bir felsefi sorudur. 
 
Kaynakça:
*Macgregor, P. (2008, 1 Haziran). A glimpse of Cantor's paradise, https://plus.maths.org/content/glimpse-cantors-paradise
*Infinity and Countability, https://www.su18.eecs70.org/static/notes/n10.html
*A Foundational Crisis, Ted Sider Philosophy of Mathematics,https://tedsider.org/teaching/math/HO_crisis_in_foundations.pdf *A Discrete Solution for the Paradox of Achilles and the Tortoise, (2015), Vincent Ardourel, https://hal.science/hal-01929811/file/A_discrete_solution_for_the_paradox_of_A.pdf
*The True (?) Story of Hilbert’s Infinite Hotel, (2014), Helge Kragh, Centre for Science Studies, Department of Physics and Astronomy, Aarhus University, https://arxiv.org/pdf/1403.0059

Georg Cantor

(3 Mart 1845 – 6 Ocak 1918), Ferdinand Ludwig Philipp George Cantor, Alman matematikçi. Kümeler kavramının kurucusudur. Kümeler arasında birebir eşlemenin önemini ortaya koymuş, "sonsuz küme" kavramına matematiksel bir tanım getirmiş ve gerçel sayıların sonsuzluğunun doğal sayıların sonsuzluğundan "daha büyük" olduğunu ispatlamıştır. Ayrıca kardinal sayı ve ordinal sayı kavramlarını ortaya atmış ve bu sayıların aritmetiğini tanımlamıştır. Cantor'un buluşlarının matematik ve felsefede önemli yeri vardır.
Cantor'un "sonsuzötesi sayılar" fikri sezgilerimizle ters düştüğü için, zamanın matematikçileri tarafından yoğun şekilde eleştirilmiştir. Henri Poincaré, Cantor'un fikirlerini "matematiği istila eden korkunç bir hastalık" olarak nitelendirmiş, Leopold Kronecker ise Cantor'u "şarlatan"lıkla suçlamıştır. Cantor'un 1884'ten hayatının sonuna kadar yaşadığı depresyon nöbetlerinin, kısmen bu saldırılardan kaynaklandığı iddia edilmişse de, nöbetlerin asıl sebebi muhtemelen bipolar bozukluktur.
Günümüzde, Cantor'un fikirleri matematikçilerin büyük çoğunluğu tarafından doğru kabul edilmekte ve matematik tarihinin en önemli paradigma değişimlerinden biri olarak tanınmaktadır. David Hilbert, "Cantor'un yarattığı cennetten bizi kimse kovamayacaktır" diyerek Cantor'un katkılarının önemini vurgulamıştır.
Cantor, 3 Mart 1845'te, Rusya'nın o zamanki başkenti St. Petersburg'da dünyaya geldi. Babası Georg Waldemar Cantor, Danimarka kökenli bir tüccardı ve St. Petersburg borsasında simsarlık yapıyordu. Annesi Maria Anna Cantor ise Avusturya kökenliydi ve yetenekli bir müzisyendi. Babanın sağlığı bozulunca, aile 1856'da Almanya'nın Frankfurt kentine taşındı. Cantor, Darmstadt'ta bir yatılı liseye yazıldı, ve 1860'da buradan yüksek başarıyla mezun oldu. 1862'de ise Zürih Politeknik Enstitüsü'ne (bugün ETH Zürih) girerek matematik okumaya başladı. Bir yıl sonra babası ölünce Almanya'ya döndü ve Berlin Üniversitesi'ne yazıldı. Burada, zamanın büyük matematikçileri Ernst Kummer, Karl Weierstrass ve Leopold Kronecker'den dersler aldı. 1867'de sayılar kuramı üzerine yazdığı tezini sunarak üniversiteden mezun oldu.
Bir süre Berlin'deki bir kız okulunda öğretmenlik yaptıktan sonra, 1869'da Halle Üniversitesi'nde doçent olarak çalışmaya başladı. Cantor, Halle Üniversitesi'ndeki meslekdaşı Eduard Heine'nin etkisiyle sayılar kuramından uzaklaşıp analizle ilgilenmeye başladı. 1870'de, bir fonksiyonun birden fazla trigonometrik seri açılımı olamayacağını kanıtlayarak adını duyurdu. Cantor'dan önce, Heine'nin yanı sıra Lejeune Dirichlet, Rudolph Lipschitz ve Bernhard Riemann gibi pek çok matematikçi bu problemle uğraşmış ama sonuca ulaşamamıştı. 1870-72 arasında Cantor trigonometrik serilere ilişkin bir dizi makale yayımladı, ve 1872'de Sıradışı Profesör ünvanını kazandı. Aynı sene yazışmaya başladığı meslekdaşı Richard Dedekind, gerçel sayıları "Dedekind kesitleri" olarak tanımladığı meşhur makalesinde, Cantor'un trigonometrik seri makalelerinden birini referans olarak gösterdi.
Cantor 1873'te rasyonel sayıların doğal sayılarla birebir eşlenebildiğini, bir başka deyişle rasyonel sayıların sayılabilir sonsuzlukta olduğunu kanıtladı.Aynı yıl, cebirsel sayıların (yani katsayıları tamsayı olan herhangi bir polinomun kökü olarak yazılabilen gerçel sayıların) da sayılabilir olduğunu kanıtladı. 1874'te ise gerçel sayıların tamamının sayılabilir olmadığını gösterdi. Böylece gerçel sayıların çok küçük bir kısmının cebirsel olduğu, neredeyse tamamının aşkın sayılar olduğu ortaya çıktı.
Cantor bundan sonra, boyut sayıları farklı olan kümelerin, mesela bir birim uzunluğundaki (tek boyutlu) bir doğru parçasıyla bir birimkare alana sahip (iki boyutlu) bir karenin, birebir eşlenip eşlenemeyeceğini araştırmaya başladı. 1877'de bulduğu sonuç oldukça şaşırtıcıydı: Bir birim uzunluğunda bir doğru parçasının üzerindeki noktalar, p boyutlu uzayın tüm noktalarıyla birebir eşlenebiliyordu. Arkadaşı Dedekind'e bu sonuçtan bahsederken "Je le vois, mais je ne le crois pas!" ("Görüyorum, ama inanmıyorum!") diye yazdı.
1878'te yazdığı bir makalede, birebir eşleme, sayılabilirlik ve boyut kavramlarına açıklık getirdi. Cantor, kendi fikirlerine açıkça karşı çıkan Kronecker'in muhalefetinden korktuğu için bu makaleyi yayımlanmadan önce geri çekmek istemiş, Dedekind ve Weierstrass'ın desteğiyle bundan vazgeçmişti.1879 ve 1884 arasında yayımladığı altı makaleyle, kümeler kuramının temellerini attı, "sonsuzötesi" (kardinal ve ordinal) sayılar fikrini anlattı. Bu makaleleri yayımlayan Mathematische Annalen dergisinin editörleri, aslında büyük bir cesaret örneği sergiliyorlardı, çünkü Cantor'un fikirleri, Kronecker'un başını çektiği bir grup nüfuzlu matematikçi tarafından şiddetle eleştiriliyor ve hatalı bir düşünce şekli olarak yorumlanıyordu. Bu kuvvetli muhalefetin farkında olan Cantor, makalelerinde eleştirilere uzun uzun cevap vermeye özen gösteriyordu. Mayıs 1884'te ilk ağır depresyon nöbetini geçiren Cantor, birkaç hafta içinde kendini toparladıysa da matematiğe dönmek için yeterli özgüveni bulamadığından, felsefe ve edebiyatla ilgilenmeye başladı. Sonsuzluk ve kümeler hakkında kendi geliştirdiği fikirlerin felsefi ve teolojik sonuçlarıyla ilgileniyor, ve bu konuda pek çok filozofla yazışıyordu. Bu yazışmaların bir kısmını 1888'de yayımladı. Edebiyatta ise Shakespeare'in tiyatro eserlerini inceliyor, bunların aslında Shakespeare değil Francis Bacon tarafından yazıldığını kanıtlamaya çalışıyordu. Shakespeare ve Bacon konusundaki bu garip saplantısından hayatı boyunca vazgeçmeyecek, bu konuyla ilgili araştırmalarını 1896 ve 1897'de iki kitapçık halinde yayımlayacaktı. (Saplantının sebebi büyük ihtimalle bipolar bozukluk idi.) 1890'da, Alman Matematikçiler Cemiyeti'nin (Deutsche Mathematiker-Vereinigung) kurucularından biri oldu, ve bu cemiyetin 1891'deki ilk toplantısına başkanlık etti. Bu toplantıya, bir türlü iyi geçinemediği Leopold Kronecker'i de davet ettiyse de, karısı bir dağcılık kazasında ciddi şekilde yaralanınca Kronecker toplantıya katılamadı. Bu toplantıda Cantor, yeni kurulan Cemiyet'in ilk başkanı seçildi.Cantor, son önemli makalesini 1895 ve 1897'de iki kısım halinde yayımladı. Bu makalede, kümeler kuramıyla ilgili bugün alışık olduğumuz bazı kavramları (altkümeler gibi) tanımlıyor, kardinal ve ordinal aritmetiği tekrar gözden geçiriyordu. Cantor bu makalesinde süreklilik hipotezinin de bir kanıtını sunmak istemiş, ama çok uğraştığı halde kanıtı bulamamıştı. (Süreklilik hipotezi, eleman sayısı olarak doğal sayılardan büyük, gerçel sayılardan küçük bir kümenin varolmadığını söyler. Kurt Gödel ve Paul Cohen 20. yüzyılda göstermişlerdir ki, geleneksel kümeler kuramı aksiyomlarından yola çıkılarak bu hipotezin doğruluğu da yanlışlığı da kanıtlanamaz.) Aralık 1899'da en küçük oğlunun ani ölümüyle bir kez daha depresyona girdi ve bir daha asla tam anlamıyla toparlanamadı. Pek çok kez işinden izin alıp çeşitli senatoryumlarda tedavi gören Cantor, bu sancılı döneminde de bir taraftan matematikle uğraşmayı bırakmadı. Deutsche Mathematiker-Vereinigung'un 1903'teki toplantısında, kümeler kuramının paradoksları üzerine bir dizi konuşma yaptı, ve Heidelberg'deki 1904 Uluslararası Matematikçiler Kongresi'ne katıldı. 1911'de İskoçya'daki St. Andrews Üniversitesi'nin 500. kuruluş yıldönümü kutlamalarına davet edilince çok sevindi. Burada, kümeler kuramının yeni yıldızı Bertrand Russell ile tanışmayı umuyordu, ama sağlık problemleri sebebiyle Almanya'ya erken dönmek zorunda kalınca bu umudu gerçekleşmedi. 1912'de St. Andrews Üniversitesi Cantor'a fahri doktora verdi, fakat Cantor yine sağlık problemleri yüzünden İskoçya'ya gidip doktorasını alamadı. Cantor 1913'te emekliye ayrıldı, ve I. Dünya Savaşı koşulları yüzünden fakirlik içinde yaşamaya başladı. 1915'te, Halle'de Cantor'un 70. yaşgünü için planlanan kutlamalar savaş yüzünden iptal edilince Cantor yaşgününü evinde daha mütevazı koşullarda kutladı. Haziran 1917'de tekrar bir senatoryuma giren Cantor, burada 6 Ocak 1918'de (72 yaşında) geçirdiği bir kalp krizi sonucunda hayata gözlerini yumdu ve Halle'deki Giebichenstein Mezarlığı'na gömüldü. Cantor, Ağustos 1874'te kızkardeşinin arkadaşı Vally Guttmann ile evlendi, ve bu evlilikten altı çocuğu oldu. Üniversiteden aldığı maaşın çok düşük olmasına rağmen, babasından kalan miras sayesinde ailesini geçindirebildi.
Cantor Paradoksu
Cantor, tamsayılar kümesinin kardinalitesinin reel sayılar kümesinin kardinalitesinden büyük olduğunu, paradokslu olarak söyleyecek olursak, reel sayılar sonsuz kümesinin, tamsayılar sonsuz kümesinden büyük olduğunu ispat etmiştir. Daha genel olarak, verilen bir A kümesinin bütün alt kümelerinin kümesi kuvvet kümesi olmak üzere, bütün kümelerin kümesi (bu kümeye B diyelim) kendi kendisinin kuvvet kümesidir. Kuvvet kümeleri, her zaman onun elde edildiği kümelerden büyüktür. Paradoks verilen bir A kümesinin alt kümeler kümesinin kardinalitesi daima A kümesinin kardinalitesinden büyüktür diye ifade edilmektedir. Paradoksu daha iyi anlayabilmek için bir kümenin kardinalitesi daima kuvvet kümesinin kardinalitesinden küçüktür şeklinde ifade edilen Cantor teoremini göz önüne almak gerekir. Eğer bütün kümeler kümesi B ise bu takdirde B alt kümesinin kardinalitesi B kümesininkinden büyüktür; bununla beraber B kümesi ile B'nin alt kümesi aynı olduğundan dolayı kardinaliteleri aynı olmalıdır.
http://personal.maths.surrey.ac.uk/st/H.Bruin/MMath/Cardinality.html

Aşağıdaki Yazılar İlginizi Çekebilir!!!