Guido Grandi ıraksak serisi

1–1+1–1+1–1+… İşleminin Sonucu Kaçtır? Grandi Serisi ile tanışma vakti... Serinin toplamındaki görünen basitliğine rağmen Grandi serisi, matematikteki oldukça ilgi çekici serilerden bir tanesidir. 1-1+1-1+1-1+… şeklinde sonsuza kadar devam eden bu seri, ismini İtalyan matematikçi Guido Grandi’den alır. Grandi serisi, ıraksak serilerin klasik bir örneğidir. Iraksak seriler, yakınsak serilerin aksine limit değeri olarak belli bir değere yaklaşmaz. Bu nedenle ıraksak seriler, matematiksel tartışma için harika bir zemin sunar. Ayrıca Grandi serisinin bu kadar ilgi çekmesinin bir nedeni de toplamanın tartışmalı doğasıdır. Çünkü uygulanan toplama yöntemine bağlı olarak seri farklı sonuçlar vermektedir. Bu serinin toplamı, kimilerine göre 1, kimilerine göre 0, kimilerine göre de 1/2 dir. Şimdi bu sonuçların nasıl bulunduğunu incelemeye çalışalım.
Luigi Guido Grandi (1671 – 1742) İtalyan papaz, filozof, teolog, matematikçi ve mühendistir. Grandi matematikte en çok, taç yapraklı bir çiçek şeklindeki gül eğrisini inceleyen "Flores Geometrici" (1728) adlı çalışması ve "Grandi serileri" ile tanınır. Guido Grandi, 1671 yılında İtalya’nın Cremona kentinde doğdu. Matematikçi olmasının yanı sıra bir keşiş olan Grandi, Camaldolese tarikatının bir üyesiydi. Dine olan bağlılığı, akademik çalışmalarının önünü açarak kolayca akademik kaynaklara, çeşitli eserlere ve bağlantılara ulaşmasına kolaylık sağlıyordu. Bu yüzden Grandi’nin çalışmaları, genellikle teolojik ve matematiksel ilgilerinin iç içe geçmesiyle oluşuyordu. Bu sayede Grandi, matematiksel kavramlara dinsel açıklamalar da yaparak dönwmine göre benzersiz sayılabilecek bir bakış açısı getirmiştir. Matematikte Grandi, en çok, "petaled çiçek" şeklindeki bir eğri olan gül eğrisini inceleyen "Flores geometrici" (1728) adlı çalışmasıyla ve Grandi serisiyle tanınır. Grandi, gül eğrisine "rhodonea" adını verdi. Gül ve çiçeklere benzeyen eğriler üzerinden uzun bir zaman dilim içerisinde çalışarak bugün birçok alanda kendi isminin duyulduğu "Grandi'nin gülleri" teorisini kabul ettirmeyi başardı. pozitif bir doğal sayı olarak düşünülmek şartıyla, kutupsal koordinatların verdiği asıl koordinatlara göre denklemi  r=a.sin(nx) ve  r=a.cos(nx) olan eğriler, matematik literatüründe, "Grandi'nin gülleri" olarak bilinir. 

İtalyan matematikçi Grandi, kendi adını taşıyan Grandi serisini ilk kez 1703 yılında incelemiştir. 1-1+1-1+1-1+… serisinde toplamını hesaplarken sadece parantezlerin yerini değiştirerek serinin toplamını 0 ya da 1 şeklinde bulabileceğini gözlemlemiştir. Grandi bu gözlemini şu şekilde yapmıştır:

I. Çözüm yolu:
(1 – 1) + (1 – 1) + (1 – 1) + …= 0 + 0 + 0 + …= 0
II. Çözüm yolu:
1 + (-1 + 1) + (-1 + 1) + (-1 + 1) + …= 1 + 0 + 0 + 0 + …= 1

Guido Grandi’ye göre serinin toplamının hem 0 hem de 1 edebilmesi dini açıdan teolojik bir anlam barındırıyordu. Başlangıçta 0 olan toplam sadece bir parantezin kaymasıyla 1 oluyordu. Grandi’ye göre bu durum, yoktan yaratılışın nasıl mümkün olduğunu gösteren bir kanıttı. Grandi’nin bulguları matematik camiasında oldukça yankı uyandırdı. Bazı çağdaşları, Grandi’nin vardığı sonuçları paradoksal veya saçma olarak değerlendiriyordu. Bazıları ise Grandi’nin fikirlerinin daha fazla araştırılması gerektiğini düşünüyordu. Böylece ondan sonraki matematikçiler, matematikteki yakınsama ve ıraksama kavramları üzerine derinleşerek Grandi serisine bir çözüm bulmaya çalıştılar.
Bir serinin toplamının iki farklı sonucunun olması pek kabul edilebilir bir şey değildir. Bu nedenle Grandi de dahil olmak üzere birçok matematikçi benzer serilerin sonuçlarını tam olarak bulmaya ve çözüm için farklı yaklaşımlar geliştirmeye çabalamışlardır. Böylece Grandi serisinin sonucuna ilişkin birçok yorum ortaya atılmıştır.
Peki 1-1+1-1+1-1+… İşleminin Sonucu Kesirli Olabilir mi?
Burada gösterilen seri toplamı 1-1+1-1+1-1+…. işlemi için en kabul gören kesirli sonuçların başında 1/2 cevabı gelir. Grandi ve ondan sonra gelen birçok 18. yüzyıl matematikçisi bu serinin toplamının cevabının 1/2 olacağını savunmuştur. Ama tam sayıların toplamından oluşan bir serinin cevabı neden 1/2 olsun ki?
Grandi cevabın 1/2 olabileceğini şu şekilde özetliyor: "Eğer iki kardeşin babalarından tek bir adet mücevher aldığını ve bu mücevheri dönüşümlü olarak kendi müzelerinde saklamak istediğini hayal edin. Bu gelenek onların çocuğuna da geçerse her iki ailenin de toplamda 1/2 adet mücevheri olur." 
Ünlü matematikçi G. W. Leibniz ise Grandi’nin bu açıklamasına katılmış ve bunu olasılıksal akıl yürütmeyle doğrudan desteklemeye çalışmıştır. Bu noktada Leibniz, serileri rastgele bir noktada toplamayı bıraktığımızda o noktaya kadar olan toplamın eşit olasılıkla 0 ya da 1 olacağını, bu nedenle bunların ortalaması olan 1/2’yi cevap olarak almanın mantıklı olacağını savunmuştur. 

Topoloji ve analitik sayı teorisi, karmaşık analiz ve sonsuz küçük hesabı gibi matematiğin diğer birçok dalında öncü ve etkili keşifler yapan ünlü İsviçreli matematikçi, fizikçi, astronom, coğrafyacı, mantıkçı ve mühendis Leonhard Euler (1707 – 1783) serinin toplamının 1/2 cevabını savunmak için daha karmaşık yöntemler kullanmıştır. 1760 tarihli De Seriebus divergentibus (Farklı Seriler Üzerine) adlı makalesinde 1-1+1-1+1-1+… ile 1/2 kesrinin eşdeğer nicelikler olduğunu ve birini diğerinin yerine her daim koyabileceğimiz konusunda hiçbir şüpheye yer olmadığını iddia etmiştir. 
Dönemin matematikçilerin yaklaşımlarına göre 1−1+1−1+1−1+1−1+...… toplamını hesaplamanın en basit yolu, onu bir iç içe seri olarak algılamak ve toplama veya çıkarma işlemlerini doğrudan bu kısmi toplamlarda gerçekleştirmektir. Buna göre iki farklı çözüm yolu elde edilir. 1. Çözüm yolunda en baştan itibaren paranteze alınarak işlem yapılırsa;
(1 − 1) + (1 − 1) + (1 − 1) + … = 0 + 0 + 0 + … = 0 sonucu elde edilir. Öte yandan, ikinci çözüm yolunda, terimler farklı bir yolla öbeklendirildiğinde parantezin yeri değiştirilerek oluşturulan seri toplamı, yukarıda elde edilen 0 sonucuyla çelişir ve 1 sonucu elde edilir.
1 + (−1 + 1) + (−1 + 1) + (−1 + 1) + … = 1 + 0 + 0 + 0 + … = 1

Grandi serisini parantez yardımıyla öbeklere ayırma yoluyla ulaşılabilen "değerler" 0 ve 1'dir. Eilenberg–Mazur hilesi olarak adlandırılan benzer bir yöntem, sicim kuramı ve cebirinde zaman zaman kullanılmaktadır. Üçüncü bir yaklaşım olarak; Grandi serisi bir ıraksak geometrik seri olarak ele alındığında, yakınsak geometrik serilere uygulanan yöntemler bu seriye uyarlanarak farklı bir çözüm değeri bulunabilmektedir.

S = 1−1+1−1+1−1+1−1+...…, ve bu seriyi 1 den çıkarırsak
1 − S = 1 − (1−1+1−1+1−1+...…) = 1 − 1 + 1 − 1 + … = S bulunur. 
1 − S = S olduğundan
1 = 2S  olur ki bu durumda S= 1/2 olur. Yani S = 1 − 1 + 1 − 1 + …serisinin toplamı 1/2 olur.

Seri üzerinde yapılan bu oynamalar, bir serinin toplamının tam olarak ne ifade ettiği konusuna odaklanmaktadır. Serileri isteğe göre öbeklere ayırmak ve bunlar üzerinde dört işlem uygulaması yapmak her ne kadar önemliyse de kesin olarak şu sonuçlara ulaşılabilir:

Buna göre Grandi serisinin toplamı için sunulan çözümler özetlenirse;
(a) 1−1+1−1+1−1+...… serisinin bir toplamı yoktur.
(b) 1−1+1−1+1−1+...…serisinin bir toplamı, 0 dır.
(c) 1−1+1−1+1−1+...…serisinin bir toplamı, 1 dir.
(d) 1−1+1−1+1−1+...…serisinin bir toplamı 1/2 olur.
Böylece sıralanan çözümlerdeki ifadeler, doğrulanabilir ve kanıtlanabilir durumda olmuş olur.

Cesàro ve Abel Toplamlarına Göre Grandi Serisinin Toplamı Kaçtır?
Bunun için öncelikle matematikteki ıraksama ve yakınsama kavramlarına bakmamız gerekir. 1-1+1-1+1-1+… gibi bir seride kısmi toplamların dizisi sonlu bir limite yakınsamıyorsa, sonsuz serimiz ıraksak demektir. Grandi serisi de ıraksak serilere bir örnektir. Grandi serisinin kısmi toplamlarını incelediğimizde değişen bir model gözlemleriz. İlk kısmi toplam 1, ikincisi 0, üçüncüsü yine 1’dir ve bu böyle devam eder. Bir cevap hem 0 hem de 1 oluyorsa o zaman cevap, kısmi toplamlar dizisin ortalaması olan 1/2 olur.

Önce kısmi toplamlar nedir onu öğrenelim. Kısmi toplamlar serinin belirli bir adetteki teriminin toplamıdır. Örneğin: 1,2,3,4... diye giden bir seride;
S1=1
S2=1+2=3
S3=1+2+3=6
S4=1+2+3+4=10
olur. Bu toplamı aynı şekilde Grandi serisindeki değerlere uygulayalım. 
1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 +........serisi için kısmi toplamları yazalım:
S1=1
S2=1-1=0
S3=1−1+1=1
S4=1−1+1-1=0
......
Bu durum serinin tek bir sonlu değere yakınsamadığını gösterir. O nedenle bu seri ıraksak olarak sınıflandırılır. Iraksak olmasına rağmen matematikçiler, bu tür serilere sonlu değerler atamaya çalışmıştır. Bunu yaparken kullandıkları yöntemlerden biri de Cesàro toplamasıdır. Cesàro toplamasında ıraksak serilerin kısmi toplamlarının ortalamasını dikkate alarak sonuca ulaşırız. Grandi serisi için kısmi toplamları düşünecek olursak, Sn, n’inci kısmi toplamsa Cesàro toplamı n sonsuza yaklaştıkça bu kısmi toplamların ortalamasının limitidir. Bu durumda kısmi toplamlar dizisi 0 ile 1 arasında değişir. Ve n sayısı sonsuza kadar büyüdükçe, bu kısmi toplamların ortalaması alınarak 1/2’ye yaklaşan (0+1+0+1+…)/n ortalamasını verir. Böylece, Cesàro toplamı Grandi Serisine 1/2 değerini atar. Cesaro'nun Toplamı, bu kısmi toplamların ortalamasını bularak ıraksak serinin toplam sonucuna bir sonlu değer (1/2) bulmamızı sağlar. Grandi serisinde;
S1=1
S2=1-1=0
S3=1−1+1=1
S4=1−1+1-1=0
.....
İlk terim toplamı S1=1
İlk 2 terimin kısmi toplamının S1+S2 ortalaması, (1+0)/2= 0,5, 
ilk 3 terimin kısmi toplamının S1+S2+S3 ortalaması (1+0+1)/3 = 0,667 olur ve böyle devam ettiğinde sonuçların 1/2 daha da yaklaştığını ve sonunda sonsuza kadar işlemler devam ettirildiğinde limit değerinin 1/2 olduğu kabul edilir.
Diferansiyel geometri alanında çalışmış İtalyan bir matematikçi Ernesto Cesàro (1859 – 1906), Grandi serisinin sonucuna ilişkin bir kuvvet serisini dikkate almayı düşünmüş ve bunun için  Abel toplamında Grandi serisi için 1 – x + x² – x³+ x⁴-… kuvvet serisini ele almıştır. Bu kuvvet serisinde x soldan 1’e yaklaştıkça toplamına bakılır. Bu kuvvet serisi 1/(1+x) olarak ifade edilebileceğinden bu ifade limit değeri olarak 1/2’ye yakınsar. Bu yüzden Abel toplamı da Grandi serisinin toplamının 1/2 olacağını gösterir.

Grandi Serisinin Günlük Hayattaki Yeri ve Önemi
1-1+1-1+1-1+… ile ifade edilen Grandi serisi sadece matematiksel bir merak ürünü değildir. Bu serinin çeşitli disiplinlerde derin etkileri vardır. Grandi gibi ıraksak serilerin anlaşılması teorik fizik, sinyal işleme ve bilgisayar bilimi gibi alanlarda son derece önemlidir. Teorik fizik alanında bakacak olursak ıraksak seriler, kuantum alan teorisi ve sicim teorisinde karşımıza çıkar. Grandi serisi gibi seriler burada renormalizasyon sürecine yardımcı olur. Sinyal kontrolü ve işlemede Grandi serisi sinyallerin analizi ve manipülasyonu sırasında karşımıza çıkar. Iraksak serilerin anlaşılmasından türetilen teknikler gürültü azaltma ve sinyal iyileştirme algoritmalarında kullanılır. Bilgisayar bilimlerinde, özellikle algoritma tasarımı ve analizi alanında ıraksak serilerden yararlanılır. Bu serilerin davranışını anlamak büyük veri kümelerini daha etkili bir şekilde işleyen optimize edilmiş kodların oluşturulmasını sağlar. Kısacası Grandi serisinden türetilen kavramlarının birçok pratik uygulaması olduğunu söylemek mümkündür. Bu nedenle 1-1+1-1+1-1+… gibi basit görünümlü bir serinin geniş kapsamlı incelenmesi saf matematiğin ötesinde, geniş kapsamları olan etkilere sahiptir.
Thomson’s Lamp (Thomson'ın Lambası), filozof J.F.Thomson tarafından 1954 yılında görevlerin de paradoksal olabileceğini göstermek için tasarlanan, Grandi serisiyle ilişkilendirilmiş çok ilginç bir felsefi paradokstur. Elealı Zenon'un (MÖ 495–MÖ 430) paradoksları üzerine inşa edilen zamanın bir ilüzyon olduğunu gösteren Thomson deneyi, bir lambanın açılıp kapanma sürecini sonsuz bölünebilir adımlarla ele alır ve paradoksal sonuçlar doğurur. Her adımda lamba açıkken sonra kapalı olacak şekilde hareket edilirse, lambanın hem açık hem kapalı olduğu iddiası ortaya çıkar. Bu düşünce deneyi, zamanda sonsuzluk ve paradokslara dair bazı temel felsefi tartışmaları da beraberinde getirmiştir. Filozof Derek Parfit (1942-2017) kişisel kimlik ve benliğin sürekliliği çalışmaları bu paradoksla ilişkilendirilebilir. Derek Parfit, kişisel kimliğin özde bir sürekliliğe değil, hafızaya ve psikolojik sürekliliğe dayandığını savunmuştur. Bu nedenle, bir bireyin geçmiş ve gelecek versiyonlarının aslında aynı kişi olmadığını öne sürmüştür. Parfit'e göre, kişisel kimlik ve zaman algısı bir illüzyondur ve kişiler aslında birbiri ardına gelen deneyimler, düşünceler ve duygular silsilesinden ibarettir. Thomson'ın Lambası, zamansal paradokslara ve sonsuzluk kavramına ilişkin düşünmeye yönlendiren daha somut bir düşünce deneyidir. Bu paradoksta, bir lambayı açıp kapamak suretiyle sonsuz adımlı bir süreçte, lambanın hem açık hem de kapalı olma durumu incelenmiştir. 
Thomson lamba deneyinde zaman kavramı şu şekilde sorgulanır: Diyelim ki bir lamba var ve iki kişi bu lambayı belli bir kurala göre açıp kapatıyor. 1.kişi lambayı açıyor. 1 Dakika sonra diğer kişi lambayı kapatıyor. Tekrar birinci kişi 1/2 dk (30 sn) sonra lambayı açar. 1/4 dk (15 sn) sonra diğer kişi kapatır. Bu şekilde her seferinde birbiri ardına gelen bu kişiler süreyi yarıya indirerek devam ediyor. Bu döngüye sonsuza kadar devam ediliyor.
Burada lambayı +1 olarak açıp, 0 olarak kapatmayı düşünelim. Thomson’un deneyinin Grandi’s serisi ile aynı olduğu görülür.
AÇIK, KAPALI, AÇIK, KAPALI = 1, 0, 1, 0, 1 …
Zamanlamalara gelince, 1 dk için ON, 1/2 dk için OFF, 1/4 dk için ON .... 
Bu lamba deneyindeki toplam süreyi veren sonsuz seri toplamı; 1 + 1/2 + 1/4 + 1/8 + ... 'dan başka bir şey değildir. Bu nedenle, adım sayısı sonsuz olsa da, seri toplamı bir sonlu zamanda (1 + 1/2 + 1/4 + 1/8 + ... =2 dakika) tamamlanabilir. Onu süper görev yapan şey de tam olarak budur. Lambanın AÇIK, KAPALI, AÇIK, KAPALI = 1, 0, 1, 0, 1 … şeklinde sonsuza döngüye sahip olarak devam etmesi Grandi serisi ile toplandığında 1/2 olur ki bu durum lambanın AÇIK veya KAPALI olduğu anlamlarına neyi ifade eder? Soruyu cevaplandırmanın  bir yolu olarak, lambanın eşit olasılıklarla ON veya OFF olabileceği söylenebilir.
Görüldüğü gibi, sonsuz sayıda terim içeren toplamlar, yani sonsuz seriler, toplama ve çıkarma gibi çok temel matematiksel kavramlara dair anlayışımızı zorlayabilir. Bu durumda sonsuz seriler çeşitli biçimleriyle gündelik yaşamımızda farklı yaklaşımlarla kullanılabilir.

Kaynakça:
https://en.wikipedia.org/wiki/Grandi%27s_series
https://thatsmaths.com/2018/07/12/grandis-series-divergent-but-summable/
https://themathophile.wordpress.com/2020/04/12/grandis-series/
https://infinitesimallysmall.com/2021/03/01/grandis-series/
https://www.academia.edu/31100989/Final_version_on_Grandis_series
https://plus.maths.org/content/when-things-get-weird-infinite-sums
Melike Üzücek, www.matematiksel.org
| | | | | Devamı... 0 yorum

Türev ve İntegral Konuları

Limit, türev ve integral konularıyla alakalı olarak blog sayfamızda yer alan konu başlıkları aşağıdaki gibidir. Konu anlatımı ve örnek sorularla ilgili ünite açıklanmaya çalışılmıştır. İstifadenize sunulan bu çalışmayı hayır dualarınızla destekleyiniz. Kolaylıklar dilerim.


LİMİT ve SÜREKLİLİK

Bir fonksiyonun bir noktada sürekliliği

Limitte ∞-∞ belirsizliği

Limitte ∞/∞ belirsizliği

Limitte 0/0 Belirsizliği

Trigonometrik fonksiyonların limitleri

Genişletilmiş reel sayılar kümesinde limit 

Sinx/x limiti ve ispatı 

Limitin tarihçesi 

 

TÜREV ve UYGULAMALARI

Türevle grafik çizimi 

Düşey ve yatay asimptot

Maksimum ve minimum problemleri

Bileşke fonksiyonun türevi ve ispatı

Bölüm türevi ve ispatı

Çarpım türevi ve ispatı 

Toplam ve fark türevi ispatı 

Polinom fonksiyonların türevi ve ispatı 

Doğrunun eğiminde türev 

L-Hospital Kuralı 

Ters trigonometrik fonksiyonların türevi 

Tanx ve Cotx fonksyionlarının türevi ve ispatı 

Sinx ve Cosx fonksiyonlarının türevleri ve ispatı 

Logaritma fonksiyonun türevi 

Artan ve azalan fonksiyonlar 

 

İNTEGRAL

İntegralle hacim hesabı

Daire yardımıyla integralde alan hesabı 

İki eğri arasında kalan alan 

Belirli integralle alan hesabı 

Belirli integral 

İntegralde basit kesirlere ayırma yöntemi

Kısmi integrasyon yöntemi

Logaritma ve üstel fonksiyon integrali

Ters trigonometrik fonksiyonların integrali

Trigonometrik fonksiyonların integrali

İntegralde değişken değiştirme yöntemi

Belirsiz integral alma kuralları

Belirsiz integral

Diferansiyel kavramı

Riemann toplamı

Bir fonksiyonun bir noktada sürekliliği

Süreklilik matematik ve bir çok bilim dalında uygulamaları olan önemli bir kavramdır.  Bir fonksiyonun herhangi bir noktada sürekli olması için öncelikle o noktada tanımlı bir fonksiyon olması gerekir. Tanımsız olan bir noktada süreklilik aranmaz. Tanımlı olarak verilen bir noktada fonksiyonun sürekliliği araştırılırken fonksiyonun verilen x=a noktasında limitinin olması gereklidir. Yani fonksionun o noktadaki sağdan ve soldan limit değerleri birbirine eşit olmalıdır. Fonksiyonun verilen x=a noktasındaki limit değeri fonksiyonun o noktadaki görüntüsüne yani f(a) değerine de eşit olmalıdır. Bu şartlar sağlandığında "fonksiyon x=a noktasında süreklidir" denir (continous function). Sürekli olmayan fonksiyon o noktada süreksiz olur. 

Süreklilik kavramı bir fonksiyonun tanım kümesine ait bir x0 noktası için f (x0) noktası ve x noktasının sağ ve sol tarafındaki değerler (noktanın sağ ve sol komşulukları) hakkında bilgi verir.  Bir x0∈R noktası için A kümesinin bir  ε>0 reel sayısı olmak üzere x0 noktasının herhangi bir ε komşuluğunda (x0ε , x0+ ε) ⊆ A özelliğine sahip bir alt kümesinde tanımlı bir f : A → R fonksiyonu için, x bağımsız değişkeni x0 reel sayısına yaklaşırsa f(x) değerleri de f(x0) değerine yaklaşmış olur. Bu şekildeki fonksiyonların sağdan ve soldan yaklaşma değerleri birbirine eşit ise fonksiyonun bu noktada limiti vardır. Bu limit değeri, fonksiyonun x0 noktasındaki f(x0) değerine eşit ise bu fonksiyon bu noktada sürekli olur. 

Süreklilik tanımının haricinde bazı f:A→R parçalı fonksiyonları için x bağımsız değişkeni x0 reel sayısına sağdan veya soldan yaklaştığında f(x) değerleri f(x0) değerine yaklaşmaz. Bu şekildeki fonksiyonlar x0 noktasında sürekli olmaz yani fonksiyon x0 noktasında süreksizdir. Bir fonksiyon bütün Reel sayılar kümesinde süreklilik tanımını sağlıyorsa fonksiyona sürekli fonksiyon denir. Polinom fonksiyonlar her noktada sürekli fonksiyonlara örnek olarak verilebilir.
Fonksiyonun sürekliliğini epsilon-delta tanımına göre gösterebilmek için verilen koşulun her durumda sağlandığı δ (delta) bir değerini ε (epsilon) cinsinden ifade edebilmemiz gerekir. Aşağıda buna bir örnek verilmiştir. Buradaki tanımın genel limit tanımından farkı; fonksiyonun o noktadaki (x=a noktasındaki) f(a değerinin limit tanımına yerleştirilmesidir.
| | | Devamı... 0 yorum

Dairenin alanı ve ispatı

Dairenin alanı; pi sayısı ile dairenin yarıçapının karesinin çarpımı ile bulunur. Dairenin alanını bulabilmek için, bir düzgün çokgenin düzenli olarak kenar sayısı arttırılır. Kenar sayısı ne kadar fazla olursa düzgün çokgen o kadar çembere benzer. Dolayısıyla n kenarlı (sonsuz kenarlı) çokgenin alanı hesaplandığında, meydana gelen dairenin de alanı bulunmuş olur. 

Bir daire esasında daire dilimlerinin toplamından meydana gelmiştir. Bu daire dilimleri, yan yana hiç boşluk kalmayacak şekilde sıralandığında, bir dikdörtgen meydana gelir. Ortaya çıkan bu dikdörtgenin alanı hesaplandığında dairenin alanına ulaşılır. 

Dairenin alan hesabı için, yukarıda anlatılan özellikle ilgili olarak hazırlanmış animasyonu, aşağıdaki videodan izleyebilirsiniz. (Daire Alanı-Youtube)
Yukarıdaki örnek matematiksel olarak ifade edilirse; Bir düzgün çokgende kenar sayısını ne kadar arttırırsak, o çokgen o kadar çembere benzer. Yani çokgenin kenar sayısını sonsuza yaklaştırdığımızda, çokgen (limit değeri) artık çembere dönüşmüş olur. Bu şekilde dairenin alanı hesaplanırken, limit yaklaşımından yararlanılır. (Bkz. sinx/x limiti)

Daire alanındaki mantıkla, benzer şekilde silindirin hacmine de ulaşılır. Yani bir silindir taban dairesi baz alınarak, çok sayıda silindir dilimine ayrıldığında, bu dilimler boşluk kalmayacak şekilde dizilirse ortaya bir dikdörtgen çıkar. Silindirdeki dilim sayısı sonsuz olduğunda, silindirin toplam hacmi, ortaya çıkan dikdörtgenin alanına eşit olacaktır. Konu ile ilgili hazırlanmış silindir hacim materyalini inceleyebilirsiniz.  (Bkz. Silindirin Hacmi Materyali) 

Yarıçapı, r olan dairenin alanı, integral yardımıyla da hesaplanabilir. Bunun için 4 tane eş daire dilimlerinden birinin alanı integralle hesaplandıktan sonra, çeyrek daire diliminin alanı bulunur.  Bulunan bu sonuç, 4 ile çarpılarak tüm dairenin alanı hesaplanmış olur. İntegral hesabında açısal (kutupsal) dönüşüm uygulanır.
Daire diliminin alanı bulunurken, dilimin gördüğü merkez açının ölçüsü bilinmelidir. (Bkz. Çemberde Açılar) Bunun için ya merkez açının ölçüsü verilmeli ya da bu daire dilimini çevreleyen yayın uzunluğu bilinmelidir. Buna göre, oran-orantı yardımıyla daire diliminin alanı hesaplanır.


Çemberin çevresi ve ispatı

O merkezli ve r yarıçaplı bir dairenin çevre uzunluğunun, dairenin çap uzunluğuna (2r) oranı π sabit sayısını verir. Buna göre; Çemberin çevresi, çemberi çapı ile pi sayısının çarpımı ile bulunur. Çevre formülünün hesabı yapılırken, Archimedes’in (Arşimet) π sayısının değerini elde etmek için kullandığı yaklaşımdan yola çıkılarak ispatlama yapılabilir. Bu yaklaşımda pi sayısı şu gerçeğe dayanır: Bir çemberin çevre uzunluğu, n kenarlı düzgün kirişler ve teğetler dörtgenlerinin çevre uzunlukları arasındadır ve n arttırılarak iki çevre uzunluğu arasındaki sapma azalır. Bu gösterim, çokgenler ile çemberin çevre uzunluğu arasındaki fark yavaş yavaş tüketidiği için "tüketme yöntemi" olarak bilinir. Tüketme yöntemini kullanan Archimedes, π sayısının olduğu aralığı 3+10/71< Pi sayısı<22/7 olarak hesaplamış ve buna göre pi sayısının yaklaşık değerini de 3,14 olarak bulmuştur. 

Archimedes’in Pi saysısının bulunması için gösterdiği bu yaklaşımı, çemberin çevresi için kullandığımızda, çemberin içine çizilen kirişlerin oluşturduğu düzgün çokgenlerin kenar sayısı, ne kadar çok arttırılırsa çokgenin çevresi ile çemberin çevresi birbirine o kadar yakın olur. Buna göre düzgün çokgenin kenar sayısı, sonsuza yaklaştığında ise düzgün çokgen, artık çembere dönüşmüş olur ki bu durumda düzgün çokgenin çevresinin limit değeri, çemberin çevresini verir.


Çemberin çevresi, yay uzunluğunun toplamını veren integral bağıntısı ile de hesaplanabilir. Bunun için Çember üzerinde alınan rastgele bir P noktasının kutupsal biçimi yazıldıktan sonra çemberin yay uzunluğunun toplamını veren integral yazılır. Aynı metod dairenin alanını veren bağıntı içinde kullanılır. (Bkz. Dairenin Alanı integral ispatı)

O merkezli, r yarıçaplı dairede AOB merkez açısının gördüğü yay uzunluğunun ölçüsü |AB|;  oran ve orantı yardımıyla bulunur. Daireyi sınırlayan çember, ölçüsü 360° olan bir yay olarak kabul edilebilir. Buna göre orantı yapılırsa merkez açıya karşılık gelen yayın uzunluğu bulunmuş olur.



Sayılabilir Sonsuzluk Kavramı

Sonsuz kavramı, matematikte farklı bir tanımlamadır. "Lemniscate", “sonsuzluk” ya da “sekiz” şeklinde (∞) bir eğriyi ifade eden genel bir terimdir. Kelime, Latince lēmniscātus (“kurdeleli”) ve Yunanca λημνίσκος (lēmniskos) (“kurdele”) sözcüklerinden gelir. Genellikle matematik ve fizikte herhangi bir sonu olmayan kavramları veya sayıları tanımlamak için kullanılır. Matematiksel denklemi: (x2+y2)2−cx2−dy2=0 şeklinde olup d<0 olduğunda eğri bir lemniskattır. Proclus, Johann ve Jakob Bernoulli, Gerono, Cassini gibi matematikçiler çeşitli lemniscate eğrileri tanımlamıştır.
Matematikte “sonsuz” kavramı bazen sayı gibi ele alınır; örneğin “sonsuz sayıda terim” ifadesinde olduğu gibi burada sayılamayacak kadar çoklukta bir sayı adedi olduğunu ifade eder. Ancak gerçek sayılar kümesinde sonsuzluk bir sayı olarak yer almaz. Bazı sayı sistemlerinde ise "sonsuz küçük" değerler tanımlanabilir. Sonsuz küçük değer, sıfırdan büyük ama her gerçek sayıdan daha küçük olan bir önemsenmeyecek kadar küçük olan bir niceliktir. Yani “çok çok küçük ama sıfır olmayan” bir sayı gibi düşünülebilir. Matematikte, limit kavramı içindeki ε (epsilon) genellikle böyle "Sonsuz küçük" değeri temsil eder. Sonsuz küçük değer olanın çarpmaya göre tersi alınırsa ε’nin tersi (1/ε gibi) çok büyük bir sayı olur ve bu bir sonsuz sayı olarak düşünülebilir. Buradaki sonusz kavramı, normal sayılarla ifade edilemez; sürekli artan bir niceliği temsil eden ve büyüklüğünün bir sınırı olmayan değerdir.
19. ve 20. yüzyıllarda yaşamış matematikçiler bu alanda çalışmalar yapmıştı. Özellikle Georg Cantor, sonsuz ve sonsuz kümeler üzerine önemli çalışmaları ile bilinir. (Bkz. Georg Cantor) G. Cantor’un kuramına göre farklı boyutlarda sonsuz kümeler vardır. Örneğin, tamsayıların oluşturduğu küme “sayılabilir sonsuz” olarak adlandırılırken, gerçek sayıların oluşturduğu küme “sayılamayan sonsuz” olarak tanımlanır. Bu kavramlar başlangıçta anlaşılması zor ve hatta kabul edilmesi güç olsa da, günümüzde küme teorisi, analiz ve matematiksel mantığın temel taşlarından biri hâline gelmiştir. Matematikte bir küme sonsuz ise, elemanlarını tek tek sayarak sona ulaşmak mümkün değildir. Örneğin doğal sayılar kümesi (1, 2, 3, …) sonsuzdur. Cantor, sonsuzun yalnızca bir sıfat olmadığını, aynı zamanda ölçülebilir bir büyüklük olabileceğini göstermiştir. Eğer bir küme, doğal sayılarla bire bir eşleştirilebiliyorsa sayılabilir sonsuzdur; bu yapılamıyorsa sayılamayan sonsuzdur. Örnek vermek gerekirse, tüm tam sayılar ve rasyonel sayılar sayılabilir sonsuz kümelerdir, ancak gerçek sayılar sayılamaz sonsuzluktadır; bu nedenle gerçek sayılar daha büyük bir sonsuzluk olarak kabul edilir. Tüm çift sayılar her doğal sayıya bir çift sayı atayarak doğal sayılarla eşlenebilir. Rasyonel sayılar da bir listeye dizilebilir; böylece rasyonel sayılar sayılabilir sonsuz olarak kabul edilir. Buna göre doğal sayıları listeleyebilirsiniz, ama gerçek sayıları listeleyemezsiniz. G. Cantor’dan önce matematikçiler, bazı sonsuz kümelerin doğal sayılarla bire bir eşlenebileceğini fark etmelerine rağmen bunu kuramsallaştıran Cantor olmuştur. 
Doğal sayılar N={0,1,2,3,4......} ile pozitif tamsayılar aynı kardinaliteye sahiptir. Eşleme fonksiyonu şöyle yazılabilir: f(n) = n+1  
Doğal sayılar ile çift sayılar aynı kardinaliteye sahiptir. Eşleme fonksiyonu şöyle yazılabilir:  
Tüm tamsayılar da doğal sayılar ile aynı kardinalitededir. Eşleme fonksiyonu şöyle yazılabilir: n çift ise f(n)=
G. Cantor, 1872’de rasyonel sayılar kümesi üzerinde çalıştı. Rasyonel sayılar, doğal sayıları da içerir çünkü her tam sayı n, n/1 olarak yazılabilir. Her iki rasyonel sayı arasında sonsuz başka rasyonel sayı vardır. Görünüşte rasyonel sayılar doğal sayılardan çok daha fazla gibi görünse de, Cantor bunların sayıca eşit olduğunu kanıtlamıştır. Bu, rasyonel sayıları bir matrise yerleştirip diyagonal bir şekilde listeleyerek yapılabilir; bu sayede rasyonel sayılar doğal sayılarla bire bir eşlenebilir. Bu tür kümelere sayılabilir sonsuz kümeler denir ve kardinalitesi  (alef sıfır) ile gösterilir.   
Her rasyonel sayı iki tam sayının a ve b aralarında asal tam sayılar olacak biçimde a/b şeklinde yazılmasıyla oluşturulabilir. Buna göre bu sayı çiftleri bir ızgara gibi spirale yerleştirilir ve doğal sayılara birebir eşlenir. Böylece  yoğun olmasına rağmen sayılabilir olur. Bunu izah ederken tüm tam sayı çiftlerini (a,b) iki boyutlu bir koordinat düzleminde düşünebiliriz. Her nokta bir rasyonel sayıyı temsil eder (geçerli olması için b ≠ 0 ve a, b aralarında asal olmalı). Örneğin: (1,2) noktası →1/2 ve (−3,5) noktası →-3/5 ve (0, 0) noktası → 0 sayısını temsil edecek şekilde yerleştirelim. Bu şekilde devam ettiğimizde düzlemdeki tüm noktaları bir sprial (örneğin merkezden dışa dönen bir yol) boyunca tek tek sıralayabiliriz. Böylece her (a,b) çifti, spiraldeki bir sıraya (doğal sayıya) karşılık gelir. Bu spiral yöntemiyle her nokta (a,b) sadece bir tane doğal sayıya denk gelir. Yani iki farklı nokta (örneğin (1,2) ve (3,4)) aynı doğal sayıya karşılık gelmez. Bu yüzden birebir eşleme vardır. Spiral her noktaya gider ama her nokta bir rasyonel sayıyı temsil etmez (bazıları geçersizdir, örneğin b=0 noktası için bir karşılık bulunamaz.) Yani bazı doğal sayılar “boş” kalır ama bu problem değildir, çünkü bizim için önemli olan birebir eşlemenin olmasıdır tam kapsama gerekli değildir. Sonuç olarak |Q| ≤ |N| olduğunu görürüz. Bu eşleme sayesinde rasyonel sayıların kümesi, doğal sayılardan daha fazla değil (en fazla o kadar) eleman içerir. Ayrıca, her doğal sayı da bir rasyonel sayıdır (örneğin 3 = 3/1), dolayısıyla |N| ≤ |Q| de doğrudur. Cantor–Bernstein Teoremi’ne göre bu |Q| ≤ |N| ve  |N| ≤ |Q| iki koşulu varsa o zaman |Q| = |N| olduğunu söyleyebiliriz. Sonuç olarak Rasyonel sayılar sonsuzdur, ama “doğal sayılar kadar” sonsuzdur. Yani sayıca aynı büyüklüktedirler — her rasyonel sayı bir doğal sayıyla eşleştirilebilir.
G. Cantor’un bir sonraki sorusu, gerçek sayıların kardinalitesi olmuştur. Gerçek sayılar, sürekli sayı doğrusu üzerindeki tüm noktaları içerir, irrasyonel sayıları da kapsar. Cantor, gerçek sayıların doğal ve rasyonel sayılardan “daha büyük” olduğunu kanıtladı. Bunu, diyagonal argüman ile gösterdi: 0 ile 1 arasındaki gerçek sayılar bir listeye alınmış olsa bile, listedeki her sayının ondalık basamaklarından yeni bir sayı türetmek mümkündür. Bu yeni sayı, listedeki hiçbir sayı ile aynı olmayacağı için, gerçek sayılar sayılamayan sonsuzluktur. Gerçek sayıların kardinalitesi kümelerin sürekliliği (c) olarak adlandırılır.
G. Cantor’un en dikkat çekici sonucu gerçek sayılar kümesinin doğal sayılarla bire bir eşlenemeyeceğini göstermesidir. Yani doğal sayılardan daha büyük bir sonsuzluk kavramı vardır. Bu düşünceyi destekleyen en ünlü kanıt Cantor’un diyagonal argümanıdır. Diyagonal argümanın özeti şöyledir: Varsayalım ki 0 ile 1 arasındaki tüm gerçek sayılar bir liste halinde yazılmış olsun. Bu dizide yer almayan bir sayı oluşturmak için listedeki her sayının i’inci ondalık basamağından farklı bir rakam seçerek yeni bir ondalık sayı oluşturulur. Bu yeni sayı listedeki hiçbir sayı ile aynı olamaz. Sonuç olarak, [0,1] aralığındaki gerçek sayılar listeye alınamaz; yani gerçek sayılar kümesi eşleştirme yapılamadığından gerçek sayılar "sayılamayan" sonsuzdur.
 
1874’te Cantor, 1 uzunluğundaki bir doğru ile 1 kenar uzunluğundaki bir kare arasındaki noktaların bire bir eşlenip eşlenemeyeceğini araştırdı. Sonuç, doğru ve karedeki noktaların aynı kardinaliteye sahip olduğuydu. Bu düşünce, küp veya n-boyutlu hiper-küp için de geçerlidir. Cantor bu sonucu görünce şaşkınlığını gizleyememiş ve “Görüyorum ama inanamıyorum!” demiştir. Cantor çalışmalarında farklı kardinal sayıları tanımladı ve ilkini  diğerlerini  olarak gösterdi.
  
G. Cantor, doğal sayılar () ve gerçel sayılar () kümesi arasında başka bir büyüklükte sonsuz küme olup olmadığını merak etti. Yani şöyle soruyordu: Doğal sayılar sayılabilir sonsuzdur ve kardinalitesi ile gösterilir. Gerçel sayılar sayılamayan sonsuzdur ve kardinalitesi c (süreklilik kardinalitesi) ile gösterilir.  olacak şekilde bir kardinal sayı var mıdır? Yani doğal sayılar ve gerçel sayılar arasında “orta büyüklükte” bir sonsuzluk var mı? Bu soru, Cantor’un zamanında sürekli hipotez (continuum hypothesis) olarak adlandırıldı. Hipotez, şöyle özetlenebilir: “Her sonsuz küme ya sayılabilir sonsuzdur  ya da gerçel sayılarla aynı kardinaliteye sahiptir (c). Arada başka bir sonsuzluk yoktur.” Cantor’un matematiksel araçları bu hipotezi çözmek için yeterli değildi. 1940’ta Kurt Gödel, hipotezin çürütülemeyeceğini yani standard matematik (ZFC aksiyomları) ile yanlışlanamayacağını gösterdi. 1963’te Paul Cohen, hipotezin kanıtlanamayacağını yani standart matematikle doğrulanamayacağını gösterdi. Böylece sürekli hipotez, modern matematikte bağımsız bir problem hâline geldi.
 
Georg Cantor’un bu kuramı, küme teorisi ve matematiğin temelleri açısından bir dönüm noktasıdır. Sayılamayan sonsuzluk kavramı analizde, topolojide ve mantıkta merkezi bir rol oynar. Sonsuzlukların farklı katmanlarının olması, matematiksel gerçeklik anlayışını değiştirmiştir. Bilgisayar biliminde diyagonal yöntemleri, Kurt Gödel’in eksiklik teoremleri ve Alan Turing’in durdurma problemi gibi çalışmalara temel oluşturmuştur. Başlangıçta Cantor’un fikirleri bazı matematikçiler tarafından felsefi sebeplerle reddedilmiş olsa da, günümüzde kuantum mekaniğinden karmaşık sistemlerin analizine kadar “sonsuzluk” ve “küme büyüklüğü” kavramları kritik hâle gelmiştir. Veri bilimi ve algoritma teorisinde sayılabilir ve sayılamayan kümeler arasındaki fark analizlerde kullanılmaktadır. 
 
Sonuç olarak, sonsuzluk kavramı sadece “sınırı olmayan, sayılamayan, çok büyük” bir kavram değildir; farklı türleri vardır ve bu türler birbirinden ciddi biçimde ayrılır. Georg Cantor sayesinde biliyoruz ki sonsuzluk tek bir büyüklük değildir; bazı sonsuz kümeler diğerlerinden daha büyüktür. 19.–20. yüzyıl dönümünde matematikçiler “sonsuzluk” kavramını ciddiye almaya başladılar. Bu sonsuzluk kavramı keşfi, gerçek sayılar, fonksiyonlar ve kümeler teorisinde büyük ilerlemelere yol açmasına rağmen aynı zamanda çelişkiler ve paradokslara neden olmuştur. Ünlü sonsuzluk paradokslarından ikisini burada açıklayarak yazıyı bitirelim. 
 
Hilbert’in Oteli, sonsuzluk kavramının tuhaf sonuçlarını göstermek için geliştirilen ünlü bir düşünce deneyidir. Bu otelde sonsuz sayıda oda vardır ve her oda dolu durumdadır. Buna rağmen, yeni bir misafir geldiğinde yine de ona yer açmak mümkündür.Otelin yöneticisi, her misafirin bir sonraki odaya geçmesini ister:1 numaralı odadaki kişi 2 numaralı odaya,2 numaralı odadaki kişi 3 numaralı odaya,3 numaralı odadaki kişi 4 numaralı odaya geçer,ve bu düzen sonsuza kadar devam eder.Böylece 1 numaralı oda boşalır ve yeni gelen misafir rahatça yerleşebilir. Aynı mantıkla, eğer sonsuz sayıda yeni misafir gelirse, mevcut misafirler odalarını ikiyle çarparak (1→2, 2→4, 3→6 …) yeni odalara geçer; böylece tüm tek numaralı odalar yeni misafirlere ayrılır.Bu düşünce deneyi, sonsuzluk kavramının sezgilerimize ters düşen yönlerini ortaya koyar: Otel tamamen dolu olsa bile, hala yer açılabilir; çünkü sonsuz bir otelde son oda yoktur. Bu da, matematikteki “sonsuzun bitmeyen” ve “sınır tanımayan” doğasını çarpıcı bir şekilde gösterir.
 
Zeno’nun paradoksu, hızlı koşucu Aşil ile yavaş bir kaplumbağa arasındaki hayali bir yarışı anlatır. Aşil, kendine güvendiği için kaplumbağaya küçük bir başlangıç avantajı verir. Zeno’ya göre, bu durumda Aşil kaplumbağayı asla yakalayamaz. Çünkü Aşil önce, kaplumbağanın başladığı noktaya ulaşmak zorundadır. Ancak Aşil o noktaya geldiğinde, kaplumbağa biraz daha ilerlemiş olur. Aşil bu yeni mesafeyi kat ederken, kaplumbağa yine az da olsa daha ileriye gider. Bu süreç sonsuza kadar sürer: Aşil her seferinde aradaki mesafenin bir kısmını kapatır ama kaplumbağa hep biraz öndedir. Bu nedenle, Zeno’ya göre, Aşil kaplumbağayı yakalamak için sonsuz sayıda adım atmak zorunda kalır; bu da sanki asla yetişemeyecekmiş gibi görünür. Paradoks, sonsuz bölünme ve hareketin doğası üzerine düşünmeye yönelten klasik bir felsefi sorudur. 
 
Kaynakça:
*Macgregor, P. (2008, 1 Haziran). A glimpse of Cantor's paradise, https://plus.maths.org/content/glimpse-cantors-paradise
*Infinity and Countability, https://www.su18.eecs70.org/static/notes/n10.html
*A Foundational Crisis, Ted Sider Philosophy of Mathematics,https://tedsider.org/teaching/math/HO_crisis_in_foundations.pdf *A Discrete Solution for the Paradox of Achilles and the Tortoise, (2015), Vincent Ardourel, https://hal.science/hal-01929811/file/A_discrete_solution_for_the_paradox_of_A.pdf
*The True (?) Story of Hilbert’s Infinite Hotel, (2014), Helge Kragh, Centre for Science Studies, Department of Physics and Astronomy, Aarhus University, https://arxiv.org/pdf/1403.0059

Riemann Toplamı

Bir düzgün geometrik şeklin alanı kolayca formüle edilebilir. Kenarları düzgün olmayan kapalı bir bölgenin alanını bulmak için bu bölge kenarları düzgün olan daha küçük kapalı bölgelere ayrılır. Küçük bölgelerin alanları yardımıyla büyük bölgenin alanı hesaplanabilir. Herhangi bir [a, b] aralığı verilmiş olsun. n∈ N ve kapalı aralığın sınır noktaları a ve b olmak üzere a ve b arasındaki artan sıralı x değerleri için; a = x0, x1 , x2 … xn-1 , xn=b şeklinde yazılıyorsa; P= {x0 , x1 , …, xn} şeklinde tanımlı P sonlu kümesine, [a, b] aralığının bir "bölüntüsü" denir.
 
[x0 , x1], [x1 , x2], …, [xn-1 , xn] kapalı aralıklarının her birine de [a, b] kapalı aralığının bir P bölüntüsüyle ilgili "alt aralıkları" denir. 
Bu tanımdaki alt aralıkların uzunlukları; Δx1 = x1 – x0 , Δx2 = x2 – x1 , ..., Δxn = xn – xn-1 şeklindedir. 
Δx1= Δx2 =Δx3 ... = Δxn ise yani kapalı aralık eşit olarak aynı ölçüde alt aralıklara ayrılmışsa bu P bölüntüsüne bir düzgün bölüntü denir. 
Örneğin [0,1] kapalı aralığını herbiri 1/5 birim olacak biçimde düzgün olarak parçalara ayırdığımızda {0, 1/5, 2/5, 3/5, 4/5 , 1} şeklinde eşit bölüntüler oluşturabiliriz. Bu şekilde oluşturduğumuz bir P bölüntüsü, eşit aralıklarla bölündüğünden [0, 1] aralığının bir "düzgün bölüntüsü" olur. 
Δx değeri verilen aralığın uç değerlerinin bölüntü sayısına bölümü ile bulunur. Bir kapalı [a, b] aralığı için n bölüntü sayısına göre; Δx=(b-a)/n şeklinde formüle edilebilir. Genelde düzgün bölüntüler hesaplamada daha kolay işlem yapabildiğimiz için tercih edilir. Düzgün ve düzgün olmayan bölüntünün daha net anlaşılması için konuya bir örnek verelim.

 Aşağıdaki örnekte P
1 düzgün bölüntü, P2 de düzgün olmayan bir bölüntü örneğidir. 

Karl Theodor Weierstrass

Karl Theodor Wilhelm Weierstrass (1815-1897), 31 Ekim 1815’te Almanya’nın Pruşya bölgesindeki Ostenfelde kasabasında doğmuştur. Babası bir devlet memurudur. Weierstrass genç yaşta matematiğe büyük bir ilgi duymuş, ancak ailesinin isteğiyle hukuk eğitimi almak üzere Bonn Üniversitesi’ne gitmiştir. Üniversitede hukuk okurken matematik tutkusundan vazgeçmemiş, gizlice matematik çalışmaya devam etmiştir. Daha sonra öğretmen olmak için eğitimine yönelmiş ve uzun yıllar boyunca ortaokul-lise düzeyinde matematik öğretmeni olarak görev yapmıştır. Bu dönemde, kendi araştırmalarını da sürdürmüştür. Weierstrass, profesyonel matematikçi olarak kariyerine 40 yaşına yakın bir yaşta başlamıştır.
Weierstrass, matematikte modern analizin kurucularından biri olarak kabul edilir. Ondan önce limit, süreklilik ve türev gibi kavramlar daha çok sezgiye dayalı biçimde açıklanıyordu. Weierstrass bu kavramları kesin ve mantıksal temellere oturtarak modern analizin temel taşlarını oluşturmuştur. Weierstrass’ın en önemli katkılarından biri, limitin epsilon-delta tanımıdır. Bu tanım, “bir fonksiyonun limiti vardır” ifadesini tamamen kesin bir biçimde açıklamayı mümkün kılmıştır. Bugün tüm kalkülüs ve analiz kitaplarında kullanılan bu yöntem, matematiksel analizin en temel araçlarından biridir.
 
Süreklilik ve türev kavramlarını da limit temeline dayandırarak yeniden tanımlamıştır. Ona göre bir fonksiyon bir noktada sürekli ise o noktadaki limit değeri; fonksiyonun o noktadaki görüntü değerine eşittir. Ayrıca türevi de limit kavramı üzerinden tanımlayarak fonksiyonların davranışlarını anlamak için sağlam bir teorik zemin oluşturmuştur. 
Weierstrass Limit Tanımı: Herhangi bir ε (epsilon) pozitif Reel sayısı için, buna karşılık gelen bir δ (delta) pozitif Reel sayı mutlaka vardır; öyle ki, eğer 0 < |x - a| < δ ise, o zaman |f(x) - L| < ε olur. Yani, x değeri a noktasına δ kadar yaklaştığında, f(x) değeri de L noktasına ε kadar yaklaşır. Bu, Weierstrass’ın limit kavramını kesin ve ölçülebilir biçimde tanımladığı ifadedir. 
Weierstrass, “her noktada sürekli olan ancak hiçbir noktada türevlenemeyen bir fonksiyon” örneği geliştirmiştir. Weierstrass’ın 1872 yılında matematikçilerin kalkülüs hakkında bildiklerini sandıkları her şeyi sarsacak kendi adıyla tanınan fonksiyonu yayımlamıştır. Bu fonksiyon, özellikle Fransız matematik ekolünün önde gelen isimleri tarafından kayıtsızlık ve öfke ile karşılanmıştır. Henri Poincaré, Weierstrass’ın bu fonksiyonunu “sağduyuya bir hakaret” olarak nitelendirmiş; Charles Hermite ise onu “acımasız bir kötülük” olarak nitelemiştir. Bugün “Weierstrass fonksiyonu” olarak bilinen bu fonksiyon, o dönemin matematik anlayışını derinden sarsmıştır. Bu örnek, süreklilik ile türevlenebilirliğin birbirinden tamamen farklı kavramlar olduğunu göstermiştir. Sonsuz sayıda dalga benzeri "kosinüs" fonksiyonunu bir araya getirerek bu fonksiyonu oluşturmuştur.  Ne kadar çok terim fonksiyona eklenirse, fonksiyon o kadar zikzak çizmiştir. Her noktada aniden yön değiştirerek sonsuza kadar devam eden tırtıklı bir testere dişi tarağı gibi bir görünüm vermiştir. Weierstrass fonksiyonu,  hiçbir süreksizliği olmamasına rağmen, asla türevlenebilir olmayacak bir fonksiyon olarak şüpheye yer bırakmayacak şekilde kanıtlanmıştır.
Weierstrass, güç serileri ve yakınsaklık (konverjans) üzerine de önemli çalışmalar yapmıştır. Güç serilerinin yakınsaklık özelliklerini sistematik biçimde incelemiş ve bu konuda birçok temel teorem geliştirmiştir. Bu çalışmalar, fonksiyonların davranışını anlamada büyük rol oynamıştır. Weierstrass’ın bilimsel üretkenliği oldukça yüksek olmuştur. Zamanında birçok makale kaleme almış ve eserlerinin önemli bir kısmı ölümünden sonra öğrencileri tarafından yayımlanmıştır. Başlıca eserleri arasında “Zur Theorie der Abel’schen Functionen” (Abel fonksiyonları teorisi üzerine, 1854), “Theorie der Potenzreihen” (Güç serileri teorisi) ve “Vorlesungen über die Theorie der Funktionen” (Fonksiyon teorisi üzerine dersler) yer alır.
1856 yılında Berlin’deki Krallık Politeknik Okulu’nda matematik öğretmeni olarak başladığı kariyeri, 1864’te ise Berlin Üniversitesi’nde profesörlüğe kadar yükselmiştir. Öğrencileri arasında Sofya Kovalevskaya, Georg Cantor ve Felix Klein gibi dönemin önde gelen matematikçileri bulunur. Derslerinde, matematikte kesinlik ve mantıksal düşünme ilkesini ön planda tutarak modern matematik anlayışının gelişimine büyük katkı sağlamıştır. Matematikte sezgiye dayalı biçimlere karşı net ve kesin tanımlar geliştirmiştir; özellikle süreklilik, limit ve yakınsaklık konularında tanımları popülerdir.
Karl Weierstrass, 19 Şubat 1897’de Berlin’de zatürreden ölmüştür. Arkasında, matematiğin en mantıksal ve en sağlam temeller üzerine kurulu dallarından biri olan modern analizin kalıcı mirasını bırakmıştır.
Bolzano–Weierstrass Teoremi, Weierstrass–Erdmann Koşulu, Weierstrass M Testi, Weierstrass–Casorati Teoremi, Stone–Weierstrass Teoremi, Weierstrass Eliptik Fonksiyonları, Weierstrass Fonksiyonları, Weierstrass Preparation Teoremi, Lindemann–Weierstrass Teoremi, Weierstrass Factorization Theorem, Weierstrass–Enneper Parametrizasyonu, Sokhotski–Plemelj Teoremi önemli bazı matematik çalışmalarıdır. 
Weierstrass'ın hayatı, bilimsel merak ve azmin bir örneğidir. Ailesinin beklentilerine karşı durarak, kendi ilgisini ve tutkusunu takip etmiş ve bu sayede matematiksel analiz alanına kalıcı katkılarda bulunmuştur. Onun hikayesi, bilimsel kariyerin sadece akademik başarılarla değil, aynı zamanda bireysel tutku ve kararlılıkla şekillendiğinin bir göstergesidir.
 
Kaynakça: Prof. Dr. Ali Sinan Sertöz, “Analizin Babası Karl Weierstrass,” Bilim ve Teknik, Ağustos 2017.

Düşey ve Yatay Asimptot

Bir fonksiyonun grafiği çizildiğinde bu grafikte sonsuza giden bir kolu varsa, bu kol üzerindeki rastgele bir nokta alındığında bu nokta sonsuza doğru götürüldüğünde bu noktanın bir doğruya ya da eğriye olan uzaklığı da sıfıra yaklaşıyorsa (limit değeri olarak) bu doğru ya da eğriye o fonksiyonun için asimptot değeri denir. Asimptotlar yatay ve düşey (dikey) olmak üzere, iki boyutlu uzayda iki kısımda incelenir.

Limitte ∞-∞ belirsizliği

-∞ belirsizliği limit çözümleri yapılırken ∞/∞ belirsizliği (Bkz.Limitte ∞/∞ belirsizliği)  veya 0/0 belirsizliklerine (Bkz.Limitte 0/0 Belirsizliği) dönüştürme yapılarak çözüme ulaşılır. Rasyonel ifadelerde, limit hesabında payda eşitlemesi yoluyla çözüme ulaşılır. Köklü ifadelerde ise verilen limit hesabı yapılırken köklü ifadenin eşleniğiyle çarpımı yoluyla çözüme ulaşılır. -∞ belirsizliği için aşağıda verilen limit formülünün kullanımı da hesaplamalarda kolaylık sağlar.
| | Devamı... 3 yorum

Limitte ∞/∞ Belirsizliği

Limitte polinom fonksiyon olarak verilen ifadelerde x değişkeni için bulunan ∞/∞ belirsizliklerinin çözümünde temel mantık olarak en büyük dereceli terime göre paranteze alma işlemi yapılır.Daha sonra genişletilmiş reel sayılardaki limit (Bkz. Genişletilmiş reel sayılarda limit) kurallarına göre hareket edilerek sonuca ulaşılır. 
| | | Devamı... 4 yorum

Limitte 0/0 Belirsizliği

0/0 Belirsizliklerinde verilen fonksiyonlar çarpanlara ayırma işlemlerinden yararlanılarak sadeleştirilmeye çalışılır. Daha sonra x değişkeni için verilen sayı değerine göre limit sonucu hesaplanır. Trigonometrik fonksiyonların oluşturduğu bu tip 0/0 belirsizliklerinde ise sinx/x limite bakmak daha yararlı olacaktır. Bu sinx/x ve tanx/x limitlerinin hesaplanış yöntemine (Bkz. sinx/x limiti) göre diğer trigonometrik fonksiyonların limitleri bulunabilir. 

L-Hospital Kuralı

L'Hospital 1661 'de Paris'te doğmuştur. Asil ve zengin üst tabaka bir Fransız ailesinden gelir. Asil bir aileden gelmesi nedeniyle bir süvari alayında yüzbaşı rütbesi ile görev yaptı. Ancak gözlerinin ileri derecede bozuk olması ve matematiğe olan yoğun ilgisi ve yeteneği sonucu askerliği bırakarak tamamen matematiğe yöneldi. Bernoulli 'nin öğretmenliğinde yetişmiştir. Johann Bernoulli fakir ve üretken bir matematikçi olduğundan onun teoremlerini, ispatlarını satın alarak kendi adıyla yayınlayan amatör bazı matematik çalışmaları da bulunan kişi L-Hospital'dir. 
Bugün türev ve limit konusunda çok meşhur olan ve L- Hospital adıyla anılan "L'Hospital Kuralı"nın da sonradan yapılan araştırmalar sonucu anlaşıldığı üzere asıl sahibi Bernoulli 'dir. Bu bilgiler ışığında L'Hospital için "matematiğe meraklı amatör bir matematikçi" yorumunu yapmak daha doğru bir yaklaşım olacaktır. 
Matematiksel analizde, L'Hôpital kuralı, (Löpital) bir fonksiyonun limitini türevle almak için yapılan bir formüldür. Limitinin 0/0 veya ∞/∞ olması durumunda pay ve paydanın türevinin ayrı ayrı alınması kuralına denir. Belirsizlik durumu ortadan kalkıncaya kadar türev almaya devam edilmesiyle, limitteki belirsizlik durumunun kaldırılması işleminden ibaret önemli bir türev kuralıdır. Bu yönteme L'Hopital ismi; 17. yüzyıl Fransız matematikçi Guillaume de l'Hôpital'ın, 1696 yılında yayımladığı "l'Analyse des Infiniment Petits pour l'Intelligence des Lignes Courbes" adlı kitabında açıklaması sonucu verilmiştir. Ancak yöntemin aslında Johann Bernoulli tarafından bulunduğu sonradan kabul edilmesine rağmen bu kural halen L-Hospital ismi ile kaynaklarda yer almaya devam etmektedir. 
L’Hospital, Bernoulli ile belli bir miktar aylık karşılığı anlaşma yapmış, birtakım problemleri ona çözdürmüş ve anlaşmayı kimseye söylememesini ondan istemiştir. Bu önemli limit kuralı da, ilk olarak bu şekilde ortaya çıkmış ve L’Hospital’in 1696’da yayımladığı matematik kitabıyla dünyaya tanıtılmıştır. Ancak yakın zamanda keşfedilmiştir ki L’Hospital kuralının ispatı ve ilgili örnekleri, Bernoulli’nin 1694 yılında L’Hospital’e yazdığı bir mektupta aynen bulunmaktadır. Yayınlanmış Eserleri: Analyse des infiniment petits pour l'intélligence des lignes courbes (Paris, 1696) Traité analytique des sections coniques (Paris, 1707) Recueil de l'académie des sciences (Paris, 1699-1701) Acta eruditorum (Leipzig, 1693-1699)

| | | Devamı... 2 yorum

Aşağıdaki Yazılar İlginizi Çekebilir!!!