Sembolik mantık

Sembolik mantık, semboller ve özel işaretler kullanarak mantıksal ifadelerin ve ilişkilerin analiz edildiği bir matematik dalıdır. Mantık ifadelerin sözel dille yazılması, matematiksel semboller yerine doğal dil kullanılarak yapılan bir işlemdir. Önermelerin doğruluk ya da yanlışlık durumunu belirten ifadeleri Türkçe veya başka herhangi bir doğal dilde yazılabilmesi, "sembolik dili sözel dile çevirme" olarak tanımlanır. 
Örneğin, p → q (okunuşu: p ise q) sembolik önermesi p ve q herhangi iki önerme olmak üzere: "Eğer hava yağmurluysa, o zaman sokaklar ıslaktır" biçiminde sözel olarak yazılabilir. Bu tür önerme ifadeleri; çıkarımda bulunma, akıl yürütme, argümantasyon, dilbilim ve felsefe gibi alanlarda önemli bir rol oynarlar. Önermeler, matematikte sembollerle temsil edilir ve kurulan mantıksal ifadelerin doğrulukları tablolar ve mantık yasaları incelenir. Bu şekilde, önermeler mantığında belirli kural ve prensiplere dayanarak mantıksal sonuçlar çıkarılabilir. Sembolik mantık, sözel türdeki ifadelerin matematiksel ve mantıksal ilişkilerini analiz ederek akıl yürütmeyi ve sonuç çıkarmayı kolay hale getirerek işlemlerin yorumlanmasını ve değerlendirilmesini sağlar. Sembolik mantık, matematiksel ve bilgisayar bilimleri gibi alanlarda sıklıkla kullanılan bir araçtır ve mantıksal çıkarım süreçlerini daha sistemli, daha hızlı, daha kolay ve kesin bir şekilde ele almayı sağlar.
"Matematiksel mantıkta, semboller kullanılarak ifadeler, dikden bağımsız olarak kendi mantık yasaları çerçevesinde kolaylıkla analiz edilirerek yorumlanır.
Sözel dille ifade edilen cümleler, çeşitli sembol ve bağlaçlar (operatörler) kullanılarak matematiksel dille yeniden yazılır. Sözel dille ifade edilen cümleleri matematiksel dille ifade etmek için bazı semboller ve bağlaçlar kullanabiliriz. Örneğin: "Bir sayının 5 katı, o sayıdan 15 fazladır." şeklindeki ifadeyi matematiksel olarak şu şekilde yazabiliriz: (5x = x + 15). "Bir dikdörtgenin uzunluğu, enini 3 birim aşar." cümlesini ifade ederken de (B = E + 3) sembolik dili kullanılabilir. Burada (B) uzunluğu, (E) eni temsil eder. Buna benzer yazılan matematiksel dil, gündelik kelimeler yerine semboller ve matematik operatörlerini kullanarak bilgi aktarmamızı sağlar. Bu sayede ifadeler daha kesin ve anlaşılır hale gelir.
Örnek:
"P: Bugün hava güneşlidir. Q: "Hava, 20 derecedir." şeklinde iki ifade verildiğinde, "Bugün hava güneşli ise hava 20 derecedir." bileşik önermesi, sembolik mantıkta (p → q) şeklinde gösterilebilir.
Örnek:
"A gerçek bir sayı ise, o zaman B de gerçek ve C asal sayıdır." önermesi sembollerle p → (q ∧ r) olarak ifade edilebilir. 
Örnek:
"120 sayısı 3 ile bölünebilir ve çift bir sayı ise bu sayı 6 sayısının tam katı olmaz." önermesi sembollerle (p ∧ q)→r' olarak ifade edilebilir. 
Örnek:
"Bir üçgenin çevresi tek sayı olursa bu üçgen ancak ve ancak dik üçgen veya çeşitkenar üçgen olur." önermesi sembollerle p→(q V r) olarak ifade edilebilir. 
Örnek:
"Ali, bir erkek ismidir veya Ay dünyanın uydusu değilse iki ile tam bölünebilen bir sayı, 7 den büyük olur." önermesi sembollerle (p V q')→(r V s) olarak ifade edilebilir. 
Örnek:
"Bir isim A ile başlamazsa yazılan kelimeler 3 harfli olur ya da son harfi t ile bitmez." önermesi sembollerle p'→(q ⊻ r') olarak ifade edilebilir. 

Sembolik mantıkta önermeler; genellikle p,q,r,s,t...vb gibi küçük harfle gösterilirken iki ya da daha fazla önerme, birbirine ∧, V, ⊻, →, ↔ gibi bağlaçlar yardımıyla bağlanarak daha karmaşık bileşik önermeler oluşturulur. 
Mantıkta evrensel ve kısmi niceleyiciler de sembolik olarak ifade edilebilir. Bir önermenin evrensel olarak doğru olup olmadığını belirleyen bir kavrama "evrensel niceleyici" denir. Evrensel niceleyici kavramı (∀), bir önermenin tüm durumlar için doğru veya yanlış olup olmadığını belirtir. Örneğin, "Her insan ölümlüdür" ifadesindeki "her" sözcüğü evrensel niceleyicidir çünkü ifade tüm insanlar için doğru bir hüküm belirtir. Buradaki "ölümlü olma" hükmünün dışına hiçbir insan çıkamaz, yani cümlede geçen "ölümlülük" ifadesi bütün insanları kapsar. Evrensel nicelendirmeler, mantıksal ifadelerde belirli bir evrendeki tüm öğeler için bir ifadenin geçerli olduğunu belirtmek için kullanılır. "Bütün kuşlar uçabilir" ifadesindeki "bütün" evrensel niceleyici kullanarak, her kuşun uçma yeteneğine sahip olduğunu belirtiriz. Bu nicelendiriciler, bir kümeye ait tüm nesneler veya kavramlar hakkında genelleştirmeler yapmamıza, kesin hüküm vermemize veya evrensel doğruları ifade etmemize yardımcı olur. Evrensel niceleyiciler genellikle "her", "tüm", "bütün" "kesinlikle", gibi kavramlar yardımıyla ifade edilir. Bu kavramlar, hükümde genel geçerlilik ve doğruluk ifade etmek üzere kullanılır. Evrensel niceleyicisi, "Üniversal Niceleyici" (Universal Quantifier) olarak da isimlendirilir.  "∀" sembolü ile temsil edilir ve bu sembol kullanıldığı yerde "her" veya "tüm" anlamına gelir, cümlenin başında yazılır. Örneğin, "∀x (P(x))" açık önermesi "her x için P(x)" anlamına gelir.
Mantıkta varlık nicelikleri, ifadelerin içerdikleri öğelerin miktarını belirleyen ve onların gruplama biçimini tanımlayan önemli kavramlardır. Bu nicelikler, mantıksal ifadelerin doğruluğunu ve anlamını belirlerken kullanılır ve ifadeleri daha spesifik hale getirir. Evrensel nicelik ifadeleri tüm öğeleri kapsarken, varlık niceleyici ifadeleri ifadenin bir kısmını belirtir. Hiçbir nicelik ifadesi ise hiçbir öğeyi içermediğini belirtirken, bazı nicelik ifadesi belirli bir kısmını kapsar ancak tümünü kapsamaz. 
Varlık Niceleyicisi, (Existential Quantifier) "∃" sembolü ile temsil edilir ve "bazı veya birkaç" anlamına gelir. Örneğin, "∃x (P(x))" açık önermesi "bazı x'ler için P(x)" anlamına gelir.
Sık kullanılan Evrensel ve varoluşsal nicelendiricilere ek olarak, mantıkta diğer önemli nicelendiriciler de bulunmaktadır:
Tekil Varoluş Nicelendirici: "∃!" şeklinde temsil edilir ve belirli bir özelliği karşılayan yalnızca bir örneğin varlığını ifade eder. 
Örnek: "∃!x (P(x))" ifadesi "P(x) özelliğini karşılayan yalnızca bir x var" anlamına gelir.
En Az n Varoluş Nicelendirici: "∃≥n" olarak gösterilir ve belirli bir özelliği karşılayan en az n örneğin varlığını belirtir.
Örnek: "∃≥3x (P(x))" ifadesi "P(x) özelliğini karşılayan en az üç x var" anlamına gelir.
Mantıksal nicelendiriciler, bir alan üzerinde nicelendirme yaparak ve bu öğelerin karşılaması gereken koşulları belirtirken mantıkta önemli bir rol oynarlar.
Bu niceleyiciler, matematiksel ifadeleri ve mantıksal önermeleri doğru bir şekilde tanımlamak ve analiz etmek için sıklıkla kullanılır.
| | | | Devamı... 0 yorum

Mantık doğruluk tabloları

Mantıkta doğru ya da yanlış bir hüküm bildiren ifadelere önerme denir ve önermeler genellikle p, q, r, s,... gibi küçük harflerle gösterilir. Verilen bir önerme doğru ise doğruluk değeri “1”, yanlış ise doğruluk değeri “0” dır. Böylece bir önermenin doğru ya da yanlış olma durumuna göre iki farklı doğruluk durumu vardır. Dolayısıyla birden fazla önerme olursa doğruluk durumu 2'nin kuvvetleri biçiminde değişiklik gösterir. n tane önermenin, 2n tane doğruluk durumu vardır. Bir mantıksal ifadenin doğru mu yanlış mı olduğunu gösteren tablolara doğruluk tablosu denir. Doğruluk tablosu, bir veya daha fazla basit ya da bileşik önermenin tüm olası doğruluk durumlarını ve bu durumlara karşılık gelen sonuçlarını tek parçada gösteren bir tablodur. Bağlaçların durumlarına göre oluşturulan önermelerin doğruluk durumları kolayca doğruluk tablosunda test edilebilir. 

Çift yönlü koşullu önerme

Çift yönlü koşullu önerme, "ancak" bağlacı ile kurulan bir önermedir. İki taraftan da koşulun sağlanmasını gerektirir. p ↔ q şeklinde sembolle gösterilir."p ancak ve ancak q ise" şeklinde okunur. p ↔ q önermesi esasında iki taraftan "ise" bağlacı ile kurulmuş koşullu önermenin "ve" bağlacı ile birleştirilmesiyle oluşmuştur. p ↔ q ≡ (p → q) ∧ (q → p)  Örneğin "Sınavı kazanırsan, ancak ve ancak üniversiteye gidebilirsin." önermesi çift yönlü koşullu önermeye örnek olarak verilebilir. 


"Ahmet derse gelirse, Ayşe de gelir." ve "Ayşe derse gelirse, Ahmet de gelir."cümlelerini tek bir ifadede birleştirebiliriz: "Ahmet ancak ve ancak Ayşe derse gelirse gelir." Bu cümlede iki farklı önerme vardır. p:"Ahmet derse gelir." ve q:"Ayşe derse gelir." Bu önermelerin birleşimi ile "ancak" bağlacı ile kurulmuş bir önerme olur. Mantıksal gösterimi: p ↔ q şeklindedir. Ahmet derse gelirse Ayşe ders gelir ve Ayşe ders gelirse Ahmet derse gelir." cümlesine eşdeğerdir. Cümlenin ifade ettiği anlam mantık açısından bir zorunluluk bildirip "Ahmet ve Ayşe'nin ikisi birlikte gelir ya da ikisi de gelmez" anlamındadır.
"Ancak ve ancak" bağlacı
nda, iki önermenin her ikisi doğruysa ya da her iki önermenin her ikisi yanlışsa sonuç doğru olur, önermelerden biri doğru diğeri yanlış ise sonuç yanlış olur. (1↔1 ≡ 1)   (0↔0 ≡ 1) p p→q koşullu önermesinin doğruluk değeri “1” ise bu koşullu önermeye gerektirme denir. (p → q) ≡ 1 Çift yönlü koşullu önermeye, "Çift gerektirme" de denilir. (p ↔ q ≡ 1)

"Bugün ancak ve ancak pazartesiyse ders vardır." (p ↔ q) önermesinde doğruluk durumu şu şekilde yazılabilir. Öncelikle burada iki farklı önerme vardır. p: "Bugün pazartesidir." q: "Ders vardır." Ancak ve ancak bağlacında kural "p ↔ q için p ve q aynı doğruluk durumuna sahipse önerme doğru değilse yanlıştır. Buna göre bu önermelere bağlı olarak (p ↔ q) önermesinin doğruluk durumunu inceleyelim: 

1 ↔ 1≡ 1 "Eğer bugün pazartesi ve ders varsa" önerme doğru olur.

1 ↔ 0≡ 0"Eğer bugün pazartesi ama ders yoksa" önerme yanlış olur.

0 ↔ 1≡0"Eğer bugün pazartesi değil ama ders varsa" önerme yanlış olur.

0 ↔ 0≡ 1 "Eğer bugün pazartesi değil ve ders de yoksa" önerme doğru olur.

 Mantık Konusuyla ilgili özet ders notuna ulaşmak için tıklayınız. (PDF)

Koşullu Önerme

Koşullu önerme, mantıkta bir şarta bağlı olarak kurulan önermelerdir. Şartın gerçekleşme durumuna göre koşullu önermenin doğruluk durumu değişiklik gösterir. p → q şeklinde yazılır ve şu anlama gelir: "p doğruyken q önermesi yanlış ise bileşik önerme yanlış, diğer tüm durumlarda önerme doğru olur. "Yağmur yağarsa yerler ıslanır" önermesi bir koşula bağlı olduğundan ise bağlacı ile kurulmuş bir bileşik önermedir. "yağmur yağıyorsa" (p), "yerler ıslaktır" (q) gibi iki ayrı önerme birbirine bağlaçla (ise) bağlanmıştır. "yağmur yağıyorsa" (p ≡ 1) "yerler ıslanmaz" (q≡0) durumu mümkün olmadığından yani 1 → 0 ≡ 0 olacağından bu durumda bileşik önerme yanlış olur. Bunun harici tüm durumlarda önerme doğru olur.


 Tabloda verilen tüm durumları inceleyelim.

1 → 1 yağmur yağıyor, yerler ıslanıyor → Beklendiği gibi, önerme doğru 

1 → 0 Yağmur yağıyor ama yerler ıslanmıyor → Beklenen olmadı, önerme yanlış.

0 → 1 Yağmur yağmıyor ama yerler başka bir sebeple ıslanmış → Yine de önerme doğru sayılır.

0 → 0 Yağmur yağmıyor, yerler ıslanmıyor → Koşul gerçekleşmediği için önerme doğru kabul edilir.


Koşullu önermelerin mantığında, sadece koşul gerçekleşip sonuç gerçekleşmezse önerme yanlıştır. Bunun (1 → 0 ≡ 0) haricindeki tüm durumlarda önerme doğru olur.  Ayrıca bir koşullu önermenin karşıt tersi de kendisine doğruluk durumu bakımından denk olur. Örneğin "Eğer yağmur yağarsa, zemin ıslanır." (A → B) "Eğer zemin ıslanmıyorsa, yağmur yağmamıştır." (B' →A') Bu iki cümle birbirinin denk önermeleridir (A → B) ≡ (B' →A') çünkü her durumda, biri doğruysa, diğeri de doğru olur; biri yanlışsa, diğeri de yanlış olur. 

Bir koşullu önermenin tersi, karşıtı ve karşıt tersi bulunabilir. Buna göre "Yağmur yağarsa yerler ıslanır." (p → q) önermesini inceleyelim: 

(p → q): "Yağmur yağarsa yerler ıslanır."

Koşullu Önermenin karşıtı (Converse) (q → p)
"Yağmur yağarsa yerler ıslanır." önermesinde iki önermenin yerleri değiştirilir. Yani sonuç ile koşulun yerleri değişir.  Karşıt önerme, orijinal önerme ile doğruluk durumu bakımından eşdeğer değildir.

(q → p): "Yerler ıslanırsa, yağmur yağar."

Koşullu Önermenin tersi ((Inverse) (p' → q')
"Yağmur yağarsa yerler ıslanır." önermesinde her iki önermenin yerleri değiştirilmeden olumsuzları alınır. Yani her iki tarafın sadece değili alınır. Ters önerme, orijinal önerme ile doğruluk durumu bakımından eşdeğer değildir.

 (p' → q'): "Yağmur yağmazsa, yerler ıslanmaz." 

Koşullu Önermenin karşıt tersi (Contrapositive) (q' → p') "Yağmur yağarsa yerler ıslanır." önermesinde her iki önermenin hem yerleri değiştirilir hem de olumsuzları alınır.  Karşıt ters önerme, orijinal önerme ile doğruluk durumu bakımından eşdeğerdir. Bu önerme, orijinal önerme ile mantıksal olarak denk kabul edilir..Yani biri doğruysa diğeri de kesinlikle doğrudur. (p → q) ≡ (q' →p')

(q' → p') "Yerler ıslanmazsa, yağmur yağmaz."

"İse" bağlacı ile kurulmuş bi koşullu önerme "veya" bağlacı kullanılarak da yazılabilir. Her ne kadar günlük kullanımda böyle bir kullanım yaygın olmasa da mantıksal açıdan (p → q) ≡ (p' ∨ q) önermesi birbirine doğruluk durumu bakımından denktir. "Eğer çalışırsan, başarılı olursun." (p → q) önermesi (p: çalışırsın, q: başarılı olursun) "Veya" bağlacıyla "Çalışmazsan veya başarılı olursun." (p' ∨ q) şeklinde yazılır.

| | | | Devamı... 0 yorum

"Ve, Veya, Ya da" Bağlaçları

"VE" BAĞLACI: (mantıksal olarak sembolü ile gösterilir), iki önermenin birlikte doğru olması durumunda doğru olan bir mantıksal bağlaçtır. Başka bir deyişle, A ∧ B ifadesi (A ve B), her ikisi de doğruysa doğru olur; ancak biri bile yanlışsa, tüm ifade yanlıştır. "Ve" bağlacı, doğru bir sonucu elde etmek için her iki hükmün de yerine gelmesi gerekir. Bu bağlacın kullanıldığı bir bileşik önerme, yalnızca her iki önerme de doğruysa doğru olur. Bu nedenle kesin ayrım yapılması gereken durumlarda sıklıkla kullanılır.

"Evin içinde ışık yanıyor ve dışarıda güneşli bir hava var."
(Bu cümlede, "ışığın yanması" ve "dışarıda güneşli bir hava olması" koşulları, her ikisi de doğru olduğunda, tüm önerme doğru olur.)

"Bugün yağmur yağıyor ve hava -4 derece."
(Bu örnekte, hem "yağmur yağması" hem de "havanın -4 derece olması" durumunun doğru olması durumunda tüm önerme doğru olur.) 

| | | | Devamı... 0 yorum

Önerme Nedir?

Mantıkta en küçük birim önermedir. Önerme, mantığın temel yapı taşlarından biridir ve genellikle sembolik mantıkta incelenir. Önerme, mantıkta, doğru ya da yanlış olabilen, bir düşünceyi ifade eden ve bir değer taşıyan cümle veya ifadedir. Başka bir deyişle, bir önerme, belirli bir durumu veya gerçeği belirten bir ifadedir ve bu ifade doğru ya da yanlış olabilir. Ancak bir önerme; soru, istek, emir ya da ünlem cümlesi gibi doğruluğu değerlendirilemeyen bir şey olamaz. “Bugün hava güneşlidir.” bir önermedir, çünkü bu ifade herhangi bir gerçekliğe karşılık gelir ya da gelmez; bu da onun doğru ya da yanlış olması anlamına gelir. Ancak “Merhaba!”, “Lütfen kitabı uzatır mısın?” gibi ifadeler bir önerme değildir, çünkü bu cümleler, hüküm belirtmezler ve doğruluk değeri taşımazlar. Bir önermeyi oluşturan şey, anlamının açık ve çelişkisiz olmasıdır. Belirsiz, çok anlamlı ya da mecazi dil kullanmak mantık için sorunludur, çünkü mantık olabildiğince net, tanımlı ve kesin yargılarla çalışır.

Mantık, düşüncenin içeriğiyle değil, onun biçimiyle, yani yapısıyla ilgilenir. Bir düşünce doğru olabilir ama mantıklı olmayabilir; ya da bir düşünce mantıksal olarak kusursuz olabilir ama içerdiği bilgi gerçek dışı olabilir. Mantık bu iki alanı  birbirinden ayırır: doğruluk (truth) ve geçerlilik (validity). Mantıkta "Geçerlilik", bir düşünce zincirinde yani çıkarımda, öncüller doğru olduğunda sonucun da zorunlu olarak doğru olması hâlidir. Yani, eğer önermeler doğruysa ve aradaki bağ mantıksal kurallara uygunsa, sonuç tartışmasız biçimde doğrudur. Bu durumda çıkarım geçerlidir, çünkü biçimsel yapısı sağlamdır. 
Mantıkta "Doğruluk" (veya gerçeklik), bir önermenin gerçek dünyadaki gerçek durumu yansıtıp yansıtmadığı ile ilgili bir kavramdır. Başka bir deyişle, bir önerme doğru olduğunda, onun içeriği gerçek dünya ile uyumludur. Eğer bir önerme gerçek dünyada doğruysa, doğru olarak kabul edilir; eğer gerçek dünyada yanlışsa, yanlış olarak değerlendirilir. Örneğin, "2 + 2 = 4" önermesi doğru bir önermedir, çünkü bu matematiksel bir gerçeği yansıtır. Örneğin, "Ay, Mars'ın uydusudur." önermesi ise yanlış bir önermedir.
| | | | Devamı... 0 yorum

Mantık ve Tarihçesi

Mantık, insan zihninin düşünsel işleyişini; doğruluk ve yanlışlık, tutarlılık ve çelişki gibi kavramlar çerçevesinde sistematik, nesnel ve tutarlı bir yaklaşımla ele alan bir disiplindir. Kuramsal ve uygulamalı yönleri bir arada barındıran mantık, felsefe, matematik, dilbilim, bilişim ve bilimsel düşüncenin metodolojik temellerini paylaşan köklü bir bilgi alanıdır. Mantık, insan zihninin kavramsal düşünme, değerlendirme ve çıkarım üretme yetilerinin yapısını ve işleyiş ilkelerini sistematik bir biçimde inceleyen disiplinler arası bir bilgi alanıdır. Doğru ile yanlış, tutarlılık ile çelişki gibi temel karşıtlıklar üzerinden zihinsel süreçlerin geçerlilik ve doğruluk ölçütlerini sorgular. Akıl yürütme süreçlerinin hangi ilkelere dayanarak geçerli ve doğru sayılabileceğini belirlemeyi amaçlar. Bu bağlamda, mantık yalnızca soyut akıl yürütmenin kurallarını belirlemekle kalmaz; aynı zamanda bilgi üretimi, problem çözme ve eleştirel düşünme gibi bilişsel faaliyetlerin temelini oluşturur. 

Mantık, kuramsal yönüyle formel sistemler ve sembolik dil yapılarını araştırırken; pratik yönüyle gündelik yaşamda, bilimsel yöntemlerde ve teknolojik uygulamalarda geçerli akıl yürütme biçimlerinin analizine olanak sağlar. Mantık, felsefenin epistemoloji ve ontolojiyle kesişen alanlarında temellenirken; matematikte ispat kuramı ve model teorisiyle, dilbilimde anlamsal yapıların çözümlenmesiyle, bilişimde algoritmik düşünceyle ve bilimsel metodolojide deneysel verilerin akılcı yorumlanmasıyla iç içe geçmiştir. Bu çok yönlü yapısıyla mantık, yalnızca bir düşünme aracı değil, modern bilginin inşasında merkezi bir epistemolojik zemin sunar.İnsan zihni, yalnızca bilgi toplamakla kalmaz; aynı zamanda bu bilgileri sınıflandırır, ilişkilendirir ve yeni bilgiler türetir. Mantık, bu türetim süreçlerinin geçerliliğini analiz eder.  
Mantığın temel inceleme alanları, önermelerin ve çıkarımların doğru ya da yanlış olma durumları ile bir düşünce sisteminin kendi içinde tutarlılık taşıyıp taşımadığıdır. Bu karşıtlıklar, mantıksal değerlendirmede ölçüt işlevi görür. Klasik mantık, sembolik mantık, çok-değerli mantık gibi yapılar üzerinden düşünce biçimlerinin formelleştirilmesine yardım eder. Gündelik akıl yürütme, bilimsel hipotez testleri, yapay zekâda karar alma algoritmaları vb. alanlara uygulanabilirlik açısından mantıksal süreçler önemli yer tutar. Mantık bilimi, Felsefe, Matematik, Dil Bilim, Bilgisayar ve Bilişim gibi alanlarda uygulama alanlarına sahiptir.  
Mantık Tarihçesi: İlk sistemli mantık olmasa da, doğa filozofları (örneğin Herakleitos, Parmenides) evrenin yapısını açıklarken mantıksal çıkarımlara başvurmuşlardır. Sokrates, mantıksal sorgulama (sokratik yöntem) yoluyla doğru bilgiye ulaşılabileceğini savunmuş ve eleştirel düşüncenin temellerini atmıştır. Aristoteles (M.Ö. 384–322), mantığı bağımsız bir disiplin haline getirmiştir. Aristoteles'in “Organon” adlı eserinde kıyas (sillojizm) "Tüm insanlar ölümlüdür. Sokrates bir insandır. Öyleyse Sokrates ölümlüdür." kıyas yöntemini sistemleştirmiştir. Kategoriler, önermeler, tümdengelim gibi birçok temel mantık kavramları Aristoteles’e dayanır. Aristoteles’in mantığı yaklaşık 2000 yıl boyunca Batı düşüncesine yön vermiştir. 
Helenistik ve Roma Döneminde "Stoacılar" (özellikle Chrysippos), mantığı daha sembolik hale getiren "önermeler mantığını" geliştirmişlerdir. Aristoteles’in düşünceleri Roma’da Boethius tarafından Latinceye çevrilmiştir. İslam düşünürlerinden Farabi, İbn Sina ve İbn Rüşd’ün, mantığı felsefi düşünceyle bütünleştirdiği ve medrese eğitiminde temel bir bilim dalı haline getirdiği dile getirilmiştir. İbn Sina’nın "işraki mantık" ve "burhan" (kanıtlama) kavramları, bu dönemde delil getirme ve ispatlama açısından önemli olmuştur. Aynı dönemlerde Batı dünyasında Skolastik düşünürlerin çoğu, mantığı dini argümanlara yerleştirmiştir. Özellikle Thomas Aquinas mantığı teolojik tartışmalarda çok sık kullanmıştır. 
Yeni Çağ’da Descartes ve Leibniz, rasyonel düşünceye büyük önem vermişlerdir. Bu bağlamda Leibniz’in evrensel bir mantık dili tasarladığı, mantığın matematiksel bir biçime dönüştürülmesini sağlamıştır. Kant, mantığı zihnin yapısal kategorileriyle ilişkilendirip mantık ile bilginin temellerini sorgulamaya açmıştır. 19. yüzyılda George Boole’un mantığı matematiksel formlara dökerek sembolik bi dil ile önemeler mantığını ifade etmiş, Gottlob Frege de günümüzdeki çağdaş mantığın temellerini atmıştı. Gottlob Frege, mantığın dilsel çözümlemelere dayalı sistematik bir yapı özelliğini ortaya çıkarmıştır. Bertrand Russell ve Alfred North Whitehead, tüm matematiği mantıksal ilkelerle temellendirmeye çalışarak farklı bir yaklaşım sergilemişlerdir. 20. yüzyılda Wittgenstein’ın, dil ile mantık arasında sıkı bir ilişki kurarak mantığın dilsel anlam çözümlemeleriyle birleştirip mantık ve dil arasındaki etkileşimleri incelemiştir. Alan Turing ise mantığı bilgisayar bilimine yerleştirerek, mantığın bilişimdeki önemini ortaya koymuştur.
 

Algoritma ve Özellikleri

Algoritma, belirli bir problemi çözmek veya belirli bir amaca ulaşmak için çözüm yolunun adım adım tasarlanmasıdır. Bir problemi tanımlama, nedenini açıklama, çözümü için alternatif yolları belirleme ve bu yollar arasından en uygun olanı uygulama süreçlerinin tamamı “problem çözme” olarak adlandırılır. Algoritma, bir problemi çözmek için gerekli yolun basit, net ve belirli bir sıraya göre tasarlanmış hâlidir. Matematikte ve bilgisayar biliminde bir işi yapmak için tanımlanan, bir başlangıç durumundan başladığında, açıkça belirlenmiş bir son durumunda sonlanan, sonlu işlemler kümesi algoritma içinde yer alır. Genellikle bilgisayar programlamada algoritma sıklıkla kullanılır ve tüm programlama dillerinin temeli algoritmaya dayanır. Aynı zamanda algoritma tek bir problemi çözecek davranışın, temel işleri yapan komutların veya deyimlerin adım adım ortaya konulmasıdır ve bu adımların sıralaması algoritmada oldukça önemlidir. Bir problem çözülürken algoritmik ve sezgisel (herustic) olmak üzere iki yaklaşım vardır. Algoritmik yaklaşımda da çözüm için olası yöntemlerden en uygun olan seçilir ve yapılması gerekenler adım adım ortaya konulur. Algoritmayı belirtmek için; metinsel olarak düz ifade ve akış diyagramı olmak üzere 2 yöntem kullanılır. Algoritmalar bir programlama dili vasıtasıyla bilgisayarlar tarafından işletilebilirler. 
| | | | | Devamı... 0 yorum

İlahiyat Mantık Konu Özeti

İlahiyat lisans Tamamlama 1. Sınıf 1.Dönem Ders Özetleri aşağıda yer alan derslerden ilitam kitaplarından yararlanarak özetleme yapılmıştır. Özetleme işleminde Ankara İlitam'ın uzaktan eğitim yayınları esas alınmıştır. Öğrencilerimize faydalı olması amacıyla burada yayınlanmıştır.  

İlahiyat Mantık Konu Özetini indirmek için Tıklayınız...

Mantık Yazar Prof. Dr. İsmail Koz, Ankara Üniversitesi, 2011

Sitede bulunan tüm İlahiyat dersleri konu özetleri, üniversitenin kendi kitabından satır satır okunarak büyük bir emek sarfedilerek tarafımdan çıkarılmıştır. Kişisel kullanıma açık olarak dijital ortamda herkese sunulmuştur. Hal böyleyken kırtasiyecilerin veya diğer menfaatperestlerin hiçbir yazılı izin almadan, bilgi vermeden çıkarları uğruna bu özetleri ders notu/kitap vs. haline getirerek ticari olarak satması, kul hakkıdır. Vebaldir. Asla buna Rızam yoktur.   

| | Devamı... 0 yorum

Gottlob Frege ve Mantık

"Frege (1848-1925): Gottlob Frege analitik felsefenin en önemli aracını meydana getiren modern matematiksel mantığı bularak, analitik felsefenin seyrini belirlemiş bir filozoftur. Onun asıl amacı, sayıların tabiatı ile aritmetiğin temel yasalarının nasıl salt bir mantıksal yöntemle çıkarsanabileceğini göstermektir. Mantıkçılık olarak nitelendirilen bu yaklaşım, aritmetiğin önermelerinin mantıksal önermelere dönüştürülebileceğini öngörür. O, söz konusu yaklaşımı hayata geçirmek için, öncelikle eski mantığın eksik ve sınırlamalarını gözler önüne sererek, “özne-yüklem” arasındaki geleneksel gramatik ayrımın matematiksel dilden çıkarsadığı “fonksiyon-argüman” ayrımıyla değiştirilmesi gerektiğini önerir. Mantık alanında büyük bir devrim kabul edilen bu öneri, felsefeyi ilkin eski mantığın sınırlılıklarından kurtarır. İkinci olarak, idealist mantığa karşı çıkmak suretiyle, epistemoloji üzerinden giderek realizmin mantığa dayalı yeni bir versiyonunu ortaya koyar. Nitekim bu noktadan hareket eden bütün analitik filozoflar, bilgi iddialarımızın ifade edildiği dili analiz etmenin, doğru iddiaların mantıksal formunu ortaya çıkaracağını ve böylelikle evrenin yapısıyla ilgili bilgilere sahip olabileceğimizi düşünmüşlerdir.

Frege, gündelik dilin çoğu zaman muğlâk, anlam belirsizlikleri ve tutarsızlıklarla dolu olduğunu ve dildeki gramatikal formun mantıksal formu gizlediğini ileri sürmüştür. Mantığın dilinin bütünüyle formel bir dil olması gerektiğini ileri süren Frege, böylesi saf bir dilin geliştirilmesi noktasında, kendisine örnek ya da model olarak matematiği alır. Çünkü matematik saf yargıları ifade eden bir dile sahiptir. Matematiği kendisine model alan Frege, sonraki adımda matematiksel fonksiyon ve argüman kavramlarını kullanmaya başlar. Buna göre yargılar bildiren önermeler, Aristotelesçi mantıkta olduğu gibi, özne ve yükleme değil fakat fonksiyon ve argümana ayrılarak analiz edilir. Bu çerçevede fonksiyon, onu tam hale getirmek için doldurulması gereken bir boş yere sahip olan bir kavrama, argüman ise bir kavramın altına giren ve böylelikle onu tam hale getiren bir nesneye benzetilebilir.
Sözgelimi “İngiltere’nin başkenti Londra’dır.” şeklindeki bir cümlede “x’in başkenti” ifadesi, İngiltere argümanı için “Londra” doğruluk değerine sahip bir fonksiyonu ifade eder. Frege'nin matematiksel fonksiyon ve argüman düşüncesini temele alarak geliştirdiği söz konusu formelleştirme işlemi, ona klasik mantığın sınırlılıklarını aşma ve eski mantıkta açıklanamayan bağıntı önermelerini açıklama imkânı sağlar. O, burada kalmayıp, ana düşüncesini bağlaçları ve genellik ifadelerini de kapsayacak şekilde biraz daha genişletmek için, mantıktan matematiğe geçer. Başka bir deyişle, mantıkçılık projesine yönelik meydan okumaları savuşturabilmek için sayı veya sayal sayı kavramına tatmin edici bir tanım ya da açıklama getirme yoluna gider. O, öncelikle kendi alternatif sayı anlayışının üç temel ilkesini ortaya koyar. Bu ilkeler, (1) nesnel olan ile öznel olan arasında farklılık vardır, (2) sözcükler yalıtılmış anlamlara sahip değildir, (3) kavram ile nesne arasında farklılığa dikkat edilmesi gerekir. Bu ilkeler çerçevesinde Moore sayı veya sayal sayı kavramının, psikolojik veya fiziki tanımlama teşebbüslerinden tamamen bağımsız olarak, sadece saf bir mantıksal kavram olan "özdeşlik" aracılığıyla tanımlanmış olacağını iddia eder. Bu durum ise aritmetiğin ve dolayısıyla matematiğin temel yasalarının saf mantık yasalarıyla temellendirilebileceği anlamına gelir. O, dahası matematiğin temel yasalarının analitik ve dolayısıyla a priori olduğunun gözler önüne serilmesi anlamına gelir (Cevizci, 2009, 1037-1044).
Sistemine mantıkla başlayan, sisteminin gerisindeki mantıkçılık projesini hayata geçirmek için daha sonra matematik felsefesine geçen Frege, en sonunda sisteminin semantik temellerine döner. O, bir kavramın anlamı (sinn) ile delaleti/referansı (bedeutung) arasında ayrım yapar. Bu ayrım, dış dünyanın bize sundukları yüzleri dışında başka yüzlere de sahip olduğu fikrine dayanır. Onun ifadesiyle aynı nesne kendisini bize birçok şekilde sunabilir ve dolayısıyla onun anlamı ile delaleti farklı olabilir. Bu husus dil ile dünya arasındaki ilişkinin bir yansıtma olduğunu ifşa eder. Buna göre dili, düşünmeyi ve iletişimi mümkün kılan anlam öznel unsurlar veya kendilikler değil; nesnel ve bizden bağımsız bir şeydir. Zira sözcüğün gönderimde bulunduğu şey bizden bağımsız dış dünyanın bir parçasıdır." 
 
Kaynakça:
Felsefe Tarihi Yazarlar Prof. Dr. Murtaza Korlaelçi Prof. Dr. Celal Türer, Ankara Üniversitesi Uzaktan Eğitim Merkezi, 2012, s.319

Aşağıdaki Yazılar İlginizi Çekebilir!!!