Denklem Çözme Kavrama Testi

Denklem çözme kavramını daha iyi anlamak için çeşitli kitaplardan derlenerek hazırlanmış testimizi istifadenize sunuyoruz. 

Birinci dereceden denklem çözme, kavramını kazandırmak için oluşturulmuş test her öğrenci seviyesine hitap edecek şekilde rahatlıkla yapılabilecek sorulardan meydana gelmiştir.

Denklemler testini, ders ortamında 2 ders saati içinde (2*30dk) etkinlik olarak planlayabilirsiniz. Testi indirmek için tıklayınız...


| | | 0 yorum

Fonksiyonlarda Bileşke Kavrama Testi

Fonksiyonlarda bileşke kavramını daha iyi anlamak için hazırlanmış testimizi istifadenize sunuyoruz. 

Fonksiyonlarda bileşkenin tanımı ile ilgili örnek soru ve uygulamaların ter aldığı test her seviye öğrenci için uygundur. Rahatlıkla zorlanmadan sorular çözülebilir. 

Fonksiyonlarda bileşke testini, ders ortamında 2 ders saati (2*30dk) içerisinde bir etkinlik olarak planlayabilirsiniz. 

| | 0 yorum

İki Vektörün Vektörel Çarpımı

İki vektörün vektörel çarpımı hesaplanırken vektörlerlerin standart birim vektörleri olan e1,e2 ve e3 vektörleri ile birlikte üçlü olarak determinant hesabı yapılır. Bu şekilde aşağıda verilen formülü ezberlemeden kolayca iki vektörün vektörel çarpımı bulunmuş olur. 
Vektörel çarpım yardımıyla taşıyıcı kolları vektör biçiminde verilen bir paralelkenarın alanı da bulunabilir. Aynı şekilde Uzayda lineer bağımsız  , a, b ve c üzerinde kurulu paralelyüzün hacmi, <axb,c> vektörel çarpım ve iç çarpım yardımıyla hacim hesabı yapılır.

Vektörel çarpımın özellikleri vektörel çarpımın tanımından yola çıkarak iki boyutta rahatlıkla görülebilir. Üç boyutlu uzayda da özellikleri benzer biçimde gösterebiliriz. Burada vektörel çarpım ile iç çarpım arasındaki ilişki de görülür.


Konu ile alakalı hazırladığımız uygulama testini indirip çözerseniz vektörel çarpım hakkında daha ayrıntılı bilgi sahibi olabilirsiniz. Testte yer alan sorular; vektörel çarpımın kullanım yerleri baz alınarak lise düzeyine uygun olacak şekilde hazırlanmıştır. (Klasik açık uçlu soru ve test tipi sorularından oluşan toplam 20+8=28 soruluk konu kavrama testini indirmek için tıklayınız.
| | | 10 yorum

Dik izdüşüm Vektörü

İzdüşüm, ışınlar aracılığıyla bir cismin şeklini iz düşüm düzlemine belirli kurallarla aktarılması.Yer elipsoidini harita düzlemi üzerinde matematiksel olarak gösterme yöntemine “harita izdüşümü” denir. Bu yöntem ; uygun izdüşümler, eşdeğer izdüşümler ve perspektif izdüşümler gibi sistemleri kapsar. Genellikle izdüşüm sistemi harita çizecek olan kişinin amacına göre seçilir.Kullanılan izdüşüm sistemleri arasında en eskisi “Mercator izdüşüm sistemi”dir. Yeri küresel kabul edilen bu sistem , deniz haritalarının yapımında bugün de kullanılmaktadır. Bu izdüşüm sisteminin geliştirilmesiyle “Mollweide izdüşümü” bulundu. Mollweide izdüşümünde boylam daireleri kutuplara doğru biribirine yaklaşır. Merkezi bir paralel boyunca yapılan konik bir açılımdan yararlanılan sistem “Lambert sistemi”dir. Bunlardan başka Laborde, dik, stereografik ve çok yüzlü, Gauss gibi daha çeşitli izdüşüm sistemleri de kullanılmaktadır.
Bir vektörün başka bir vektör üzerindeki dik izdüşümü alınırken öncelikle iki vektörün iç çarpımları bulunur. Daha sonra zemin vektörünün kendisiyle iç çarpımı bulunur. Bulunan bu sonuçların birbirine bölümü ile elde edilen sonuç zemin vektörüne katsayı olarak çarpılıldığında dik izdüşüm vektörü bulunmuş olur.

Yukarıda verilen izdüşüm formülü vektörlerin iç çarpımı yardımıyla rahatlıkla ispatlanabilir. İki vektörün birbiri üzerindeki dik izdüşüm vektörleri bulunurken iç çarpımdaki cos değeri ve cosinüs fonksiyonun tanımından yararlanılır.
Yukarıda geçen proj izdüşümü ifade etmek için kullanılan özel bir matematik terimidir. proj değerleri bulunduktan sonra daha kısaca yazabilmek için u ve v değerleri yazılarak izdüşüm vektörleri daha sade bir şekilde yazılmış olur.
| | 3 yorum

Vektörlerde İç Çarpım (Öklid İç Çarpım)

Uzayda iki vektörün iç çarpımı bir reel (skaler) sayıdır. Öklid iç çarpımı ile birlikte R^3 uzayına Öklid uzayı denir. İki vektörün iç çarpımı yapılırken birinci vektörün her bileşeni ikinci vektörün aynı sıradaki bileşenleriyle tek tek çarpılır ve bütün çarpım sonuçları toplanır. Unutulmamalıdır ki iç çarpımın sonucu kesinlikle bir reel sayıdır.
Uzayda iki vektörün başlangıç noktalarının herhangi bir P noktasına taşınması ile oluşan açıya bu iki vektör arasındaki açı denir.Merkezi  P  olan  birim  çemberin,  bu  açının  kenarları  arasında kalan yayının uzunluğuna iki vektör arasındaki açının ölçüsü denir. İki vektörün arasındaki açı bulunurken vektörlerin normundan uzunluğundan faydalanarak cosinüs değeri bulunur. Daha sonra bu cosinüs değerini veren açı trigonometri cetvelinden yararlanarak veya bilinen açıların trigonometrik değerlerinden yola çıkarak açı hesaplanır.
İç çarpımın özelliklerini iki boyutta rahatlıkla ispatlayabiliriz. Aynı ispat üç boyutlu uzay için de geçerlidir. İç çarpımın geometrik yorumu vektörlerde izdüşüm vektörünü göstermek için kullanılır.

| | 3 yorum

Vektörlerin Lineer Bağımlılığı

Uzayda doğrultuları aynı olan iki vektör lineer bağımlıdır. Yani biri diğerinin bir reel katı olarak yazılabilir.Uzayda, doğrultuları farklı olan iki vektör lineer bağımsızdır. Yani biri diğerinin katı olarak yazılamaz.Uzayda üçten fazla vektör lineer bağımsız olamaz.Uzayda, u, v ve w vektörleri verildiğinde w=a1.u +a2.v olacak şekilde, a1, a2 ∈ R sayıları bulunabiliyorsa bu üç vektöre lineer bağımlı, bulunamıyorsa lineer bağımsız vektörler denir.
u,v,ve w vektörlerinin lineer bağımsız olması için gerek ve yeter şart det(u,v,w) değerinin sıfırdan farklı olmasıdır. Uzayda lineer bağımsız vektörler ikişer ikişer birbirlerine dik ise bu sisteme dik koordinat sistemidenir. Uzayda bütün yer vektörlerinin kümesi R3 ile gösterilir.

Vektörlerin lineer birleşimi yazılırken herbir vektör yukarıdaki tanım gereği lineer birleşimi olarak yazabilmek için vektörlerin eşitliğinden yararlanılır. Bir vektörün diğer vektörlerin lineer birleşimi olarak yazılabilmesi için  diğer vektörlerin uygun katsayılarla çarpımı olacak şekilde belli reel katsayılarının bulunması gereklidir.

Düzlemlerin Birbirine Göre Durumu

Uzayda aynı doğru üzerinde yer almayan farklı üç nokta bir düzlem belirtir. Bununla birlikte kesişen iki doğru, birbirine paralel olan iki doğru, bir doğru ve dışındaki bir nokta da bir düzlem belirtir. Bunlara göre iki düzlem birbirine göre durumları; 1)Paralel 2)Çakışık 3) Kesen düzlemler olarak isimlendirilir.
Yukarıda anlatılanlardan yola çıkarak üç düzlem içinde aynı durumlar söz konusudur. Düzlemlerin kesişimi bir doğru boyunca olacaktır. Kesişimleri olmayan düzlemler ise birbirine paralel düzlemlerdir.
Kesişen düzlemlerin arakesitlerinde meydana gelen açılara göre noktanın düzlemlere uzaklıkları bulunabilir.
 
Uzayda denklemi verilen düzlemlerin durumları içinde yukarıda anlatılan özellikler geçerlidir. Denklemlerinin duurmlarına göre düzlemler yine paralel, çakışık veya kesişen düzlemler olabilir. Denklemlerdeki x, y ve z'nin katsayılarına göre üç durum aşağıdaki gibi incelenir.
| | | 0 yorum

İslam Kütüphanesi Seçmeler

Matematik Seçme Konuları

Aşağıdaki Yazılar İlginizi Çekebilir!!!