Net Fikir » matematikçiler » Matematik ve Gauss
Matematik ve Gauss
Etiketler :
gauss eğrisi
gauss teoremi
matematikçiler
Johann Carl Friedrich Gauss ya da Gauß (30 Nisan 1777, Braunschweig, Almanya – 23 Şubat 1855, Göttingen) İşçi kökenli anne babanın oğlu Gauss, 1777'de Almanya'nın Brunswick kentinde doğdu. Babasının yaptığı hesapları izlediği sırada, ailesi onun ileri düzeydeki zekâsını keşfetti. Küçük Carl, babasının yanlışını bulmuş ve doğru cevabı söylemişti. Hesapları tekrar kontrol eden babası hayrete düşmüştü. Çünkü, 2 yaşında oğlunun ikazı doğruydu.
10 yaşındaki Gauss'un matematiksel yeteneği, en iyi öğretmenlerini bile geride bırakıyordu. Matematik dersinin ilk gününde, Gauss ve sınıftaki diğer gözde öğrenciler, aritmetik dizin şeklinde adlandırılan konu üzerine yoğunlaştılar. Amaçları, ardışık sayılara 371, 413, 455... gibi sayıları eklemek ve bu sabit sayılar arasındaki farklılıkları anlamaktı. Gauss, bulduğu çözümü ilan etmeden önce, öğretmenleri problemin ne olduğunu büyük zorluklarla açıklamıştı.Sınıftaki diğer arkadaşlarının, onun çabucak ulaştığı çözümü bulmaları neredeyse bir saati almıştı. Bu tür dizinleri formülleştirmeye çalı gerekli bağlantıları kurmuş ve problemi çözmüştü. Bunların hepsini de, neredeyse ışık hızıyla akıldan hesaplamıştı.
Gauss'un aritmetiğe matematiğe duyduğu bu olağanüstü eğilim, Brunswick dükünün ilgisini çekti ve hemen okul masraflarını üstlendi.Genç Gauss, kolej yıllarında, dikkatini, aralarında Newton'un da bulunduğu ünlü akademisyenlerin büyük çalışmalarına yöneltti ve ilk özgün araştırmalarını gerçekleştirdi. Gauss'un erken yaşlarda ulaştığı matematiksel zaferler, daha sonraki kariyerinin de habercisiydi. 19 yaşındayken, bütün rakamların özelliklerini bir bir açıklayınca, o güne kadar geçerli matematik yasalarını alt üst etti. Dahası, gözlemler sonucu bulunan veri noktalarından geçecek en uygun eğimin belirlenmesinde kullanılan "En Küçük Kareler Metodu"nu keşfetti. Ayrıca, asal sayılarla, üçgen, kare, beşgen gibi geometrik şekiller arasındaki bağlantıları buldu. Keşfettiği bağıntıları kullanarak da, antik Yunan geometricilerinin bile gerçekleştirmeyi başaramadığı 17 kenarlı çokgeni kurdu. Bu başarılarından sadece biri bile, Gauss'un matematikçiler dünyasındaki egemenliğini kanıtlamaya yetiyordu. Ancak bu, onun için sadece bir başlangıçtı.
Göttingen Üniversitesi'ne kabul edilen dahi, 22 yaşındayken doktorasını tamamladı ve bütün cebir denklemlerinin çözümlerini sunduğu ilk kez kanıtlanan "Temel Cebir Teoremi"ni yarattı. Ama, tüm başarılarına rağmen hak ettiği ünü bir türlü kazanamamıştı. Ta ki 1801 yılına, bir İtalyan astronomun Mars ve Jüpiter arasında bir gezegen bulduğunu açıklamasına kadar... Diğer astronomlar da bu iddiayı kanıtlamak için yarıştılar. Ancak, yeni gezegen, güneşin göz kamaştıran ışınları arasında kaybolmuştu. Bilim adamları, gezegenin yerini saptamak konusunda başarılı olamıyorlardı. Gauss, adını duyurabilecek bir şans yakalamıştı.En Küçük Kareler Metodu'nu yeni gezegenle ilgili gözlemlere uygulayarak, nerede görülebileceğini belirledi. Bundan birkaç ay sonra astronomlar, Gauss'un öngördüğü yere teleskoplarını yönlendirdiler ve gerçekten de gezegeni buldular.
Astronomlar bu gezegene "Ceres" adını verdiler. Ceres, günümüzde, Mars ile Jüpiter arasındaki yörüngede bulunan binlerce kaya parçası içindeki ilk"küçük gezegen" ya da asteroit olarak biliniyor.Gauss'un bu buluşu, uluslararası alanda tanınmasına yol açtı. Bu sırada, sadece 24 yaşındaydı. Kendisine ün kazandıran gelişmeden birkaç ay sonra, ikinci bombasını patlatacak, matematik alanında en önemli çalışmalardan biri kabul edilen Aritmetik Araştırmalar (Disquisitiones Aritmeticae) adlı kitabını yayımlayacaktı. Kitabında, asal sayılar gibi bütün sayıların özellikleriyle ilgilenen matematiğin yeni dalı "sayı teorisi"ni incelemişti.Çalışması, günümüzde de kullanılan sayı teorisinin temelini oluşturuyor.
1807 yılında, Göttingen Üniversitesi astronomi bölümüne profesör oldu ve ömrünün sonuna kadar da burada kaldı. Dahi bilim adamı, 31 yaşında ikinci başyapıtını yayımladı. Konik Kesitli Gökcisimlerin Güneş Çevresindeki Hareket Kuramı (Theoria Motus Corporum Coelestium in Sectianibus Conicis Solem Ambientium) başlıklı yapıtında, Güneş Sistemi içindeki gezegenlerin çekim kuvvetlerinin hesaplanmasını ve yörünge kuramlarını gösterdi. Sunduğu yöntemler, bugün bile astronomlar tarafından kullanılıyor.Gauss, 1777'de Brunswick'teki bu evde doğmuştu. Bu yapı, II. Dünya Savaşı sırasında yıkıldı. Gauss, bu çalışmasından sonra dikkatini Dünya'ya çevirdi. 4.000 yıldır Dünya'nın kusursuz bir küre olduğu düşünülmüştü. Ancak, Isaac Newton Dünya'nın yörüngesel hareketi gereği ekvator düzleminde bir bombenin var olduğunu göstermişti. Gauss, Dünya'nın şeklini nasıl ölçebileceğini araştırırken, köklü bir keşfe daha imza attı: "Herhangi bir yüzeyin şekli, geometrinin normal kuralları ona hâlâ uygulanabiliyorsa ölçülebilir."2.000 yıl önce Yunanlı matematikçi Eukleides, bu kuralları belirlemişti. Örneğin, paralel doğrular, uzunlukları ne olursa olsun kesişmezler gibi. Ancak Gauss, Eukleides'in paralel doğruların kesişmeyecekleri ilkesini düz yüzeyleri göz önünde bulundurarak açıkladığını fark etti. Top ya da gezegen gibi kıvrımlı yüzeylerde, Eukleides yasası geçerliliğini yitiriyordu.
Zaten boylamların ekvatorda paralel olarak başlayıp, daha sonra kutuplarda kesişmesi, bunun en açık kanıtı.Bu yaklaşımı, Eukleides-dışı geometriye doğru giden yolda ilk adımdı. Dolayısıyla, o güne kadar yürütülen tüm çalışmalar bir anlamda değerini yitiriyordu. Örneğin, Eukleides-dışı yüzeylerde, bir üçgenin iç açılarının toplamı artık 180 derece değildi ya da bir çemberi çevre çapıyla Pi sayısının çarpımına eşit değildi.Gauss, bütün bunları içeren formülleri belirledi. Bu bağlamda, haritacıların neden dünyanın mükemmel bir haritasını çizemeyeceklerini açıkladı: "Bir kürenin yüzeyi gerçek bir eğime sahiptir, dolayısıyla bu doğal eğimleri bilmeden haritanın ayrıntıları belirlenemez. Buna karşılık, bir silindirin eğimli yüzeyi mükemmel bir şekilde düzleştirilebilir. O nedenle, dünya haritalarında çok farklı modeller deneniyor ve aslında eğimli olmasına karşın, düz yüzeylerde yansıtılıyor."Bu kilit keşiflere rağmen Gauss, Eukleides-dışı geometriyle ilgili çalışmalarını büyük bir gizlilik içinde yürüttü. Ne de olsa 2000 yıllık bir geçmişle hesaplaşıyordu.
Yıllar sonra, diğer araştırmacılar da benzer sonuçlara ulaştılar ve bunları açıklamaya başladılar. Harekete geçen bilim adamlarının arasında Albert Einstein da vardı. Einstein, 1915 yılında, yeni geliştirdiği Genel İzafiyet Teorisi'nin merkezine Eukleides-dışı geometriyi oturtmuştu.Genel İzafiyet Teorisi'ne göre, yerçekimi, uzay ve zamanın kütlesel eğiminin bir sonucuydu. Eğrisel ve sonlu olarak düşünülen dört boyutlu bir evrene ait çekim teorisiydi. Ancak, Genel İzafiyet Teorisi'ne göre evren, hem bir bilardo masası gibi sıfır eğrilik derecesine sahip olabilir, hem de bir top gibi pozitif eğimli ya da bir semer gibi negatif eğimli olabilirdi.Geçtiğimiz nisan ayında, astronomların uzayın derinliklerinde Büyük Patlama'dan geriye kalan sıcaklığı çözümlemeleri sırasında ortaya çıkan sonuç, Gauss'un eğimli yüzeylerin ölçülebileceği iddiasını doğruluyor. Nitekim, astronomlar, evrenin eğimini ölçtüler ve sonuçta da dün olduğu sonucuna ulaştılar.Bir denizaltının üzerindeki manyetik alan.
1830'lu yıllarda Gauss, 50'li yaşlara merdiven dayamıştı; ancak hâlâ yeni araştırma alanları arıyordu. Alman fizikçi Wilhelm Weber ile bir ekip kurup, o günlerde büyük bir karmaşa yaratan elektromanyetizma teorisini yeniden ele aldı. Manyetizmanın ölçülmesine yönelik çok hassas yeni birimler oluşturdu. Bunlar arasında "Gauss" birimi, günümüzde de kullanılıyor. Ayrıca, elektromanyetik yüklerin etkileri hakkında çok önemli teoremlere ulaştı. Bundan sonraki araştırmalarında, geometrik şekillerin veya üç boyutlu cisimlerin bazı durumlarda değişmeyen özelliklerini inceleyen matematik dalı olan "topoloji" üstünde yoğunlaştı. Topoloji, bükülen, eğrilen cisimleri inceliyordu. Gauss, bu dalın evreni kavramakta çok önemli bir yere sahip olduğunu düşünüyordu.
Tarih, bu konuda da Gauss'u haklı çıkardı. Çünkü topoloji, bugün teorik fiziğin kalbini oluşturuyor.Evrendeki parçacıkların özellikleri ve aralarındaki güç ilişkisi, topolojinin yardımıyla açıklanıyor. Gauss, 1855 yılında 78 yaşındayken ölmüştür. Hayatını matematiğe adayan bilim adamı, sayılarla oyun oynamayı kendisine görev bilmişti. Günümüze kadar uzanan teorileri, matematiğe ışık tutmayı sürdürüyor.
Matematikten astronomiye, fiziğe kadar pek çok dalda yeni keşiflere imza atan dahi, günümüzde gerçekleştirilen bilimsel araştırmalara da ışık tutuyor. Ressam Christian Albrecht Jensen, 1850'de Gauss'un portresini yapmıştır. Astronomların oluşturduğu uluslararası bir ekip, günümüzden 15 milyar yıl önce meydana gelen ve evreni doğuran "Büyük Patlama"dan geriye kalan sıcaklığı incelemişti. Bu "sıcak lekeler"in çözümlenmesi sırasında, ekip, şaşkınlık uyandıran bir sonuca ulaşmıştı: "Evreni oluşturan uzayın yapısı düzdür."Pek çok kişi, uzayın bir şekle sahip olması fikrinin imkânsızlığına inanıyor. Bunun yanı sıra, bilim adamlarına göre, tartışma yaratan son iddianın geçmişi 150 yılı aşkın bir süreye uzanıyordu. Tüm zamanların en büyük matematikçisi Carl Friedrich Gauss'a. Bu kozmik keşif, Gauss'un fikirlerinin hâlâ geçerli olduğunun bir göstergesi olmuştur. Herhangi bir bilim sözlüğü karıştırıldığında, istatistikten savaş konularına pek çok alanda ürettiği teoriler bulunabilir. İstatistik alanında, nüfus eğilimlerini açıklamakta hayati önem taşıyan çan şeklindeki "Gauss eğrisi" ya da bir nükleer denizaltının manyetik alanını nötrleştirmesi şeklinde tanımlanan "degauss"lama, bunlardan sadece ikisi.Gauss, diğer matematikçilerden farklı olarak, salt matematikten ilgi alanına giren konulara yönelik çalışmalara kadar, çok farklı alanlarda kilit buluşlara imza attı. Yapıtlarıyla matematik dünyasına yeni bir soluk getirmişti. Bu nedenle de, bilim çevresinde "Matematiğin Prensi" olarak adlandırılıyor.
Gauss'un ünlü normal dağılım (Çan) Eğrisi
Kolej öğrencilerinin IQ'sundan zürafaların ağırlığına kadar, günlük hayata ilişkin pek çok değer, normal dağılım eğrisini (çan eğrisini) izliyor ve Gauss adının önemini artırıyor. Matematiksel değerlerin incelenmesine yarayan bu eğriye de, ünlü matematikçinin adına nispetle Gauss eğrisi deniliyor. Bu eğri, ilk kez Fransız matematikçi Abraham de Moivre tarafından, 1733'te keşfedilmekle birlikte, Gauss tarafından yeniden tanımlanmış ve değerlendirmelerde kullanılan matematiksel işlemler ve formüller, onun tarafından gerçekleştirilmiştir. Gauss Eğrisi, insanların IQ düzeylerinin belirlenmesinde ortalamayı yansıtıyor. Bu da, ortalamanın altındaki ve üstündeki IQ'nun ortaya çıkmasını sağlıyor. İlkede, orta noktası doruğa ulaşan herhangi bir eğri de aynı işlevi görüyor. Ancak Gauss, gelişigüzel etmenler nedeniyle bir yayılma söz konusuysa, eğrinin belirgin bir şeklinin olması gerektiğini belirtmiştir. Üniversitelerde sınav notlarına göre dağılımların yapılmasıyla dersten geçme ve kalma durumları bu eğriye uygun biçimde hareket etmektedir. Bugün sıklıkla ders geçme sistemlerinde bu çan eğrisi yöntemi kullanılmaktadır.
Gauss, eğrinin ortalamanın her iki tarafında bulunan alanlar için aynı yüzdeliklere karşılık geleceği ile ilgili bir formül geliştirmiştir. Normal dağılım eğrisini çan şeklinde tasarlayarak yüzdelik hesaplamaları bu eğrinin altına yerleştirmeyi uygun görmüştür. Eğri, iki sayı arasındaki bağıntının yüzdelik oranını verir. Örneğin, bir kişinin boyunun sınıf ortalamasının ne kadar altında ya da üstünde olduğunun belirlenmesi gaus eğrisinden yola çıkarak bilmek mümkün hale geliyor. Bu normal dağılım eğrisi, her alana maalesef uygulanamıyor. Sözgelimi radyoaktif bozulma gibi alanlarda kullanılmaz. Ancak Gauss eğrisi, iki sayı arasında doğru çizilmeye olanak tanıyan birçok olgunun açıklanmasında işe yaramaktadır. Bu durumda, istatistik hesaplarında ve integralde ortalama değer teoremi gibi çok farklı alanlarda bu eğri kullanılabilmektedir. Standart sapma da bir sınıftaki not dağılımların belirlenmesinde ortaya çıkan farklılıkları göstermesi açısınıdan eğrinin diğer tarafa geçiş eğilimini sergilemektedir.
Takip et: @kpancar |
|
''Matematik ve Gauss'' Bu Blog yazısı;
Ocak 08, 2010 tarihinde gauss eğrisi, gauss teoremi, matematikçiler kategori başlıklarında eklenmiş olup Muallim tarafından yayınlanmıştır. Ayrıca henüz yorum yapılmamış bir yazıdır. Yazımızda hatalı bir içerik olduğunu düşünüyorsanız lütfen 'kpancar@yahoo.com' mail adresimize bildiriniz. Dualarınızı bekleriz.
Matematik Konularından Seçmeler
matematik
(209)
geometri
(124)
üçgen
(49)
ÖSYM Sınavları
(46)
trigonometri
(38)
çember
(30)
fonksiyon
(28)
sayılar
(26)
alan formülleri
(25)
türev
(22)
analitik geometri
(19)
denklem
(18)
dörtgenler
(17)
limit
(16)
belirli integral
(13)
katı cisimler
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(4)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)
En Çok Okunan Yazılar
-
ÖSYM'nin 15/06/2019 Tarihinde gerçekleştirdiği TYT matematik sınavı, farklı tarzda ayırt edici sorular içermekle birlikte, 2018 yılı TY...
-
Ehl-i Sünnet itikâdını, nazım (şiir) olarak anlatan ünlü ve önemli eserlerden biri; kuşkusuz Emâlî kasidesidir. "Bed'ül Emali...
-
Bu yazıda Esma-ül Hüsna hakkında kısaca bilgi verildikten sonra Ebced hesabı ile arasındaki ilişkiyi açıklayıp bütün 99 ismin ebced değerle...
-
Eski zamanlarda bir kral, saraya gelen yolun üzerine kocaman bir kaya koydurmuş, kendisi de pencereye oturmuştu. Bakalım neler olacaktı?.. ...
-
Herhangi bir dörtgenin alanı köşegen uzunlukları ile köşegenlerin arasında yer alan açının sinüsünün çarpımının yarısı ile hesaplanır. Bura...
-
Çocukluğumuzda mutlaka uçurtma yapmayı denemiş veya satın alınan bir uçurtmayı uçurmak için yoğun çaba sarf etmişizdir. Hazır olarak alınanl...
-
Koordinat düzleminde çizilen birim çember için çember üzerinde alınan rastgele bir L noktasından x ve y eksenlerini kesecek biçimde bir doğ...
0 yorum:
Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."
İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...