Net Fikir » ispat
Pisagor teoeremine yeni bir ispat
sin²x+cos²x=1 özdeşliği ispatı
Birim çember üzerinden gösterilen en temel trigonometrik özdeşlik sin²x+cos²x=1 farklı bir bakış açısıyla çemberdeki açılar yardımıyla da gösterilebilinir. Aynı yayı gören çevre açıların ölçüleri birbirine eşittir. Buna göre Şekildeki sarı renkle gösterilen yayı gören açıların ölçüleri birbirine eşittir. Bu eşit ölçülü açıların tanjant değerleri yazılıp birbirine eşitlendiğinde trigonometrinin en temel özdeşliği olan sin²x+cos²x=1 özdeşliği elde edilmiş olur.
Seri toplamı
Tanjant Teoremi ve İspatı
Bir ABC üçgeninde iç açılar; A, B, ve C olmak üzere bunlardan B ve C açıları ve bunlara ait kenar uzunlukları verildiğinde b>c olmak üzere kenar uzunlukları ve açılar arasında taanjant teoremi uygulanır. Buna göre kenarların farkının kenarların toplamına oranı, bu kenarların ait olduğu açıların farkının yarısının tanjant değeri ile bu açıların toplamlarının yarısının tanjant değerine bölümü aynı oranı verir.
Üçgende Trigonometrik Dönüşüm Formülleri
Daha önceki yazılarımızda trigonometrik fonksiyonlarda dönüşüm ve ters dönüşüm formüllerini verip bunların ispatlarını da açıklamıştık. Bu formüllere bağlı olarak çeşitli teoremler üretilmiştir. Bunlara örnek olarak; üçgen uygulamalarından iki güzel örnek verilebilir. (Bknz. Dönüşüm Formülleri)
**Bir ABC üçgeninde üçgenin iç açıları arasında trigonometrik dönüşüm formüllerinin uygulaması görülebilir. Aşağıda buna bağlı iki farklı teorem verilmiştir, ispatlarını inceleyebilirsiniz.
Aynı teoremi verilen ABC üçgeninin iç açılarının cosinüs değerlerine de uygularsak farklı bir sonuçla karşılaşırız. Aşağıda teorem ve ispatı birlikte verilmiştir.
Cosinüs teoremi ispatı
Dairenin alanı integralle ispatı
Dairenin alanı ve ispatı
Dairenin alanı; pi sayısı ile dairenin yarıçapının karesinin çarpımı ile bulunur. Dairenin alanını bulabilmek için, bir düzgün çokgenin düzenli olarak kenar sayısı arttırılır. Kenar sayısı ne kadar fazla olursa düzgün çokgen o kadar çembere benzer. Dolayısıyla n kenarlı (sonsuz kenarlı) çokgenin alanı hesaplandığında, meydana gelen dairenin de alanı bulunmuş olur.
Bir daire esasında daire dilimlerinin toplamından meydana gelmiştir. Bu daire dilimleri, yan yana hiç boşluk kalmayacak şekilde sıralandığında, bir dikdörtgen meydana gelir. Ortaya çıkan bu dikdörtgenin alanı hesaplandığında dairenin alanına ulaşılır.
Çemberin çevresi integralle ispatı
Çemberin çevresi ve ispatı
O merkezli ve r yarıçaplı bir dairenin çevre uzunluğunun, dairenin çap uzunluğuna (2r) oranı π sabit sayısını verir. Buna göre; Çemberin çevresi, çemberi çapı ile pi sayısının çarpımı ile bulunur. Çevre formülünün hesabı yapılırken, Archimedes’in (Arşimet) π sayısının değerini elde etmek için kullandığı yaklaşımdan yola çıkılarak ispatlama yapılabilir. Bu yaklaşımda pi sayısı şu gerçeğe dayanır: Bir çemberin çevre uzunluğu, n kenarlı düzgün kirişler ve teğetler dörtgenlerinin çevre uzunlukları arasındadır ve n arttırılarak iki çevre uzunluğu arasındaki sapma azalır. Bu gösterim, çokgenler ile çemberin çevre uzunluğu arasındaki fark yavaş yavaş tüketidiği için "tüketme yöntemi" olarak bilinir. Tüketme yöntemini kullanan Archimedes, π sayısının olduğu aralığı 3+10/71< Pi sayısı<22/7 olarak hesaplamış ve buna göre pi sayısının yaklaşık değerini de 3,14 olarak bulmuştur.
Archimedes’in Pi saysısının bulunması için gösterdiği bu yaklaşımı, çemberin çevresi için kullandığımızda, çemberin içine çizilen kirişlerin oluşturduğu düzgün çokgenlerin kenar sayısı, ne kadar çok arttırılırsa çokgenin çevresi ile çemberin çevresi birbirine o kadar yakın olur. Buna göre düzgün çokgenin kenar sayısı, sonsuza yaklaştığında ise düzgün çokgen, artık çembere dönüşmüş olur ki bu durumda düzgün çokgenin çevresinin limit değeri, çemberin çevresini verir.
Karenin Özellikleri
Kare, bir düzgün çokgen örneğidir. Kare esasında özel bir dikdörtgen çeşididir. Aynı zamanda eşkenar dörtgendir. Eşkenar dörtgende ve dikdörtgende yer alan tüm özellikleri sağlar. Bütün iç ve dış açıları 90 derecedir. iç açıları ve dış açıları ölçüleri toplamı 360 derece olup tamamı 90 derecedir. Köşegenleri dikdörtgendeki gibi birbirine eşittir ve birbirini ortalar. Köşegenlerin kesim noktası, karenin ağırlık merkezi (denge noktası) olur.
Eşkenar Dörtgen ve Özellikleri
Bütün kenar uzunlukları birbirine eşit olan paralelkenara eşkenar dörtgen denir. Paralelkenarın tüm özelliklerini sağlar. (Bkz: Paralelkenar Özellikleri)
Eş veya benzer üçgenlerde yardımcı elemanlar
Bütün kenarları ve bütün açılarının ölçüleri birbirine eşit olan üçgenelere, eş üçgenler denir. Sonuç olarak; "Eş üçgenlerde, eş açılar karşısında eş kenarlar ve eş kenarlar kaşısında da eş açılar bulunur." Eş üçgenlerde karşılıklı açı ve kenar uzunlukları eşit olduğu gibi iki eş üçgende yardımcı elemanlar olan yükseklik, kenarortay ve açıortay da birbirine eşit uzunluktadır.
İkizkenar üçgende yardımcı elemanlar
Üçgenin yardımcı elemanları, kenarortay, yükseklik ve açıortaydır. Taban açıları birbirne eşit olan üçgene ikizkenar üçgen denir. İkizkenar üçgende, eş açıların karşısındaki kenarların uzunlukları birbirine eşittir. İkizkenarlara ait, yükseklik, açıortay ve kenarortay uzunlukları, karşılıklı olarak birbirine eşittir.
Paralelkenar Özellikleri
Üçgen eşitsizliği cebirsel ispatı
Üçgen Eşitsizliğinin Cebirsel İspatı:Üçgen eşitsizliğinin cebirsel formu mutlak değer ve eşitsizlik kavramları ile birlikte:||x|-|y||≤|x+y|≤|x|+|y|şeklinde ifade edilir ve mutlak değer teoremleri ve Cauchy-Schwarz Eşitsizliği yardımıyla ispatlanır.
Üçgen eşitsizliği ve ispatı

https://muallims.blogspot.com/2021/03/ucgende-kenar-bagintilari.html
Üçgen eşitsizliğinin cebirsel formu ve ispatı ile ilgili olarak, aşağıdaki bağlantıyı kullanabilirsiniz.









































