Çemberle doğrunun birbirine göre durumları

Etiketler :
Bir düzlemde verilen bir çember ile bir doğru arasında üç temel durum vardır: 
1) Doğru Çemberi Kesmez (Çemberle doğrunun ortak bir noktası yoktur. Dıştan Ayrık) 
Verilen doğru ile çemberin kesişim kümesi boş küme ise doğru çemberin dışındadır. Bu durumda doğrunun çemberin merkezine uzaklığı d ve çemberin yarıçap uzunluğu r ise doğru ile çemberin merkezinin uzaklığı (d ile r) arasında d>r ilişkisi vardır Böylece doğru çemberi kesmez, doğru bu durumda çemberin dışında yer alır. Doğru ile çember denklemi birbirine eşitlenip ortak çözüm yapıldığında,  elde edilen ikinci dereceden tek değişkenli denklemin diskriminant değeri, sıfırdan küçük olur. Yani düzlem geometride denklemin reel kökü olmaz.
2) Doğru Çembere teğet olur. (Çemberle doğrunun ortak sadece bir noktası  vardır.)
Verilen doğru ile çemberin kesişim kümesi sadece tek nokta ise doğru çembere teğet olur. Bu durumda doğrunun çemberin merkezine uzaklığı d ve çemberin yarıçap uzunluğu r ise doğru ile çemberin merkezinin uzaklığı (d ile r) arasında d=r ilişkisi vardır Böylece doğru çembere teğet olur. Doğru ile çember denklemi birbirine eşitlenip ortak çözüm yapıldığında, elde edilen ikinci dereceden tek değişkenli denklemin diskriminant değeri sıfıra eşit olur. Yani denklemin tek kökü olur.
3) Doğru Çemberi iki farklı noktada keser. (Çemberle doğrunun iki ortak noktası  vardır.)
Verilen doğru ile çemberin kesişim kümesi iki farklı nokta ise doğru çembere teğet olur. Bu durumda doğrunun çemberin merkezine uzaklığı d ve çemberin yarıçap uzunluğu r ise doğru ile çemberin merkezinin uzaklığı (d ile r) arasında d<r ilişkisi vardır Böylece doğru çemberi keser. Doğru ile çember denklemi birbirine eşitlenip ortak çözüm yapıldığında, elde edilen ikinci dereceden tek değişkenli denklemin diskriminant değeri sıfırdan büyük olur. Yani denklemin iki farklı kökü olur.
İkinci derece denklemde geçerli olan kökler arasındaki bağıntılar, çember ve doğru denklemlerinin ortak çözümünden elde edilen ikinci dereceden tek değişkenli denklem içinde geçerli olur. Yani diskriminant değerine bağlı olarak, düzlem üzerinde bir doğru ve çember arasında üç farklı durum söz konusu olur.

 
 
Bir çemberle herhangi bir doğrunun kesişim noktasını bulabilmek için öncelikle ortak denklemin diskriminant değerine bakılır. Çember denklemi (x−a)2+(y−b)2=r2 ve Doğru denklemi y=mx+n olmak üzere doğrunun denkleminin çemberin denkleminde y yerine yazılmasıyla iki denklemden elde edilen ortak Denklem (x−a)2+(mx+n−b)2=r2 olur ki bu denklem, bir bilinmeyenli ikinci dereceden bir denklemdir. Bu ikinci dereceden denklemin discriminantı: Δ=b2−4ac incelenerek denklemin kökleri hakkında yorum yapılır buna göre çember ile doğrunun birbirine göre durumları belirlenir.

0 yorum:

Fayda vermeyen ilimden Allah'a sığınırım. İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz samimiyetle insanlara yararlı olmaktır, akıbetimiz bu vesileyle güzel olsun. Dua eder, dualarınızı beklerim...

"Allah'ım; bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."

“Allahım! Sana teslim oldum, sana inandım, sana güvendim. Yüzümü, gönlümü sana çevirdim. İşlediğim tüm günahlarımı affeyle! Ey kalbleri çeviren Allahım! Kalbimi dînin üzere sâbit kıl. Beni Müslüman olarak vefât ettir ve beni sâlihler arasına kat!”

“Rabbim! Bizi doğru yola ilettikten sonra kalplerimizi eğriltme! Bize tarafından bir rahmet bağışla.Öne geçiren de sen, geride bırakan da sensin. Muhakkak ki lütfu en bol olan Sen’sin. Senden başka ilâh yoktur."

Lâ ilâhe illallah Muḥammedürrasulüllâh


KADİR PANCAR

Aşağıdaki Yazılar İlginizi Çekebilir!!!