ÖSYM Çember ve Daire Çıkmış Sorular

ÖSYM Çember ve Daire Çıkmış Sorular: Bu PDF soyasındaçember ve daire ünitesinden mevcut müfredatta bulunan kazanımlarla ilgili sorular yer almaktadır. 2010 yılından öncesi sınavlarda çıkmış sorular bu pdf dosyasında yoktur.

ÖSYM sınav sorularına ve güncel bilgilere ulaşmak için ÖSYM resmi sitesini kullanınız.
Sınav Sorularına ÖSYM sitesinden ulaşabilirsiniz.
| | | Devamı... 0 yorum

Çemberin parametrik denklemi

Bir çemberin parametrik denklemi, genellikle merkez koordinatları ve yarıçapına bağlı olarak trigonometriden yararlanılarak yazılır. Bir çemberin merkezi (a,b) ve yarıçapı r ise bu çemberin parametrik denklemi t bir açı olmak üzere: x(t)=a+r.cos⁡(t) ve y(t)=b+r.sin⁡(t) şeklindedir. Merkezil çemberin merkezi M(0,0) orijindir.

Çemberlerin birbirine göre durumları

Düzlemde verilen iki çemberin birbirine göre 3 temel durumu vardır. İki çemberin merkezleri arasındaki mesafeye d ve yarıçaplarına r1 ve r2 dersek buna göre çemberlerin durumlarını şöyle açıklayabiliriz: 
1) Çemberler birbiriyle kesişmez.Yani çemberlerin hiç ortak noktaları yoktur. d>r1+r2 

Çemberle doğrunun birbirine göre durumları

Bir düzlemde verilen bir çember ile bir doğru arasında üç temel durum vardır: 
1) Doğru Çemberi Kesmez (Çemberle doğrunun ortak bir noktası yoktur. Dıştan Ayrık) 
Verilen doğru ile çemberin kesişim kümesi boş küme ise doğru çemberin dışındadır. Bu durumda doğrunun çemberin merkezine uzaklığı d ve çemberin yarıçap uzunluğu r ise doğru ile çemberin merkezinin uzaklığı (d ile r) arasında d>r ilişkisi vardır Böylece doğru çemberi kesmez, doğru bu durumda çemberin dışında yer alır. Doğru ile çember denklemi birbirine eşitlenip ortak çözüm yapıldığında,  elde edilen ikinci dereceden tek değişkenli denklemin diskriminant değeri, sıfırdan küçük olur. Yani düzlem geometride denklemin reel kökü olmaz.
2) Doğru Çembere teğet olur. (Çemberle doğrunun ortak sadece bir noktası  vardır.)
Verilen doğru ile çemberin kesişim kümesi sadece tek nokta ise doğru çembere teğet olur. Bu durumda doğrunun çemberin merkezine uzaklığı d ve çemberin yarıçap uzunluğu r ise doğru ile çemberin merkezinin uzaklığı (d ile r) arasında d=r ilişkisi vardır Böylece doğru çembere teğet olur. Doğru ile çember denklemi birbirine eşitlenip ortak çözüm yapıldığında, elde edilen ikinci dereceden tek değişkenli denklemin diskriminant değeri sıfıra eşit olur. Yani denklemin tek kökü olur.
3) Doğru Çemberi iki farklı noktada keser. (Çemberle doğrunun iki ortak noktası  vardır.)
Verilen doğru ile çemberin kesişim kümesi iki farklı nokta ise doğru çembere teğet olur. Bu durumda doğrunun çemberin merkezine uzaklığı d ve çemberin yarıçap uzunluğu r ise doğru ile çemberin merkezinin uzaklığı (d ile r) arasında d<r ilişkisi vardır Böylece doğru çemberi keser. Doğru ile çember denklemi birbirine eşitlenip ortak çözüm yapıldığında, elde edilen ikinci dereceden tek değişkenli denklemin diskriminant değeri sıfırdan büyük olur. Yani denklemin iki farklı kökü olur.

Çemberin Analitik incelemesi

Geometri biliminde düzlemdeki sabit bir noktaya (merkez) eşit uzaklıktaki sonsuz sayıdaki noktaların oluşturduğu kümeye (kapalı eğriye) "çember" denir. Çemberin üzerindeki noktalara eşit uzaklıkta bulunan, çemberin tam ortasında yer alan sabit noktaya "çemberin merkezi" denir ve genellikle M veya O harfi ile gösterilir. Merkezi (a,b) olan ve yarıçapı r olan bir çember; Ç(M,r) şeklinde yazılır.  Çember merkezi ile çember üzerindeki herhangi bir nokta arasındaki uzaklığa çemberin "yarıçapı" denir ve genellikle "r" harfi (radius) ile gösterilir. Çemberin merkezinden geçerek çemberin üzerinde bulunan herhangi iki noktayı birleştiren en uzun doğru parçasına "çap" (diameter) adı verilir ve 2r ile gösterilir. 
Bir çemberin yay uzunluğunun tamamını veren ifadeye "çemberin çevresi" denir ve çemberin çevresi Çevre= 2πr formülüyle hesaplanır. Çemberin kendisi ve çemberin iç bölgesi de çembere dâhil edilirse bu plaka biçimine "daire" denir, daire bir yüzey (alan) belirtir. Yarıçapı r olan dairenin alanı: Alan=π.r2 formülüyle bulunur. Alan ve çevrede kullanılan π sayısı irrasyonel bir sayıdır. π=3.14159265359... devam eden irrasyonel sabit bir sayıdır.
Merkezi M(a,b) ve yarıçapı r olan bir çemberin genel denklemi şu şekildedir: (x−a)2+(y−b)2=r2 Bu çember denklemi, çember üzerindeki tüm noktaların merkez noktasına olan uzaklığının r olduğunu ifade eder. Esasında çember denklemi analitik geometride iki nokta arası uzaklık formülü ile oluşturulur. 
(x−a)2+(y−b)2=r2 çember denklemine çemberin standart denklemi denir. Örneğin orijin merkezli ve yarıçapı 5 birim olan bir çemberi (x−0)2+(y−0)2=5şeklinde yazabiliriz. Buradan orijin merkezli bu çember; x2+y2=25 olur. Merkez (3, -2) ve Yarıçapı r=4 olan bir çemberi, (x−3)2+(y+2)2=16 şeklinde yazabiliriz. 

1) Merkezi x ekseni üzerinde olan bir çemberin merkezi noktası M(a, 0) şeklindedir. Yani, merkezi x ekseni üzerinde olan çemberin y-koordinatı sıfırdır. Bu durumda Merkezi x ekseni üzerinde olan bir çemberin genel denklemi şöyle olur:  (x−a)2+y2=r2 olur. Bu çember, x ekseni üzerinde bir noktayı merkez alır ve y ekseni boyunca yukarı ya da aşağıya doğru simetrik olarak uzanır. Örneğin merkezi (2, 0) ve yarıçapı 6 olan bir çemberin denklemini (x−2)2+y2=36 şeklinde yazabiliriz. 

2) Merkezi y ekseni üzerinde olan bir çemberin merkezi M(0,b) şeklindedir. Yani, merkezi y ekseni üzerinde olan bir çemberin x-koordinatı sıfırdır. Bu durumda çemberin genel denklemi şöyle olur: x2+(y-b)2=r2 olur. Bu çember, y ekseni üzerinde bir noktada merkezlenmiştir ve x ekseni boyunca sağa ya da simetrik olarak uzanır. Örneğin; Merkezi (0,−3) ve yarıçapı 5 olan bir çemberin denklemi: x2+(y+3)2=25 olur. 

3) Merkezi orijin M(0, 0) üzerinde olan bir çemberin denklemi çemberin en basit ve standart halidir. Merkezi orijin M(0, 0) ve yarıçapı r olan çemberin denklemi: x2+y2=r2 olur. Bu çember, hem x hem de y eksenine göre simetriktir çünkü merkez orijin üzerindedir.
Örneğin Merkezi M(0, 0) ve yarıçapı 7 olan bir çemberin denklemi: x2+y2=49 şeklindedir. Merkezi M(0, 0) ve yarıçapı 9 olan bir çemberin denklemi: x2+y2=81 şeklindedir. 

Merkezi M(0, 0) ve yarıçapı 1 olan çembere birim çember denir trigonometrik fonksiyonları tanımlamada birim çember kullanılır. Birim çemberin denklemi: x2+y2=1 şeklindedir.

4) Merkezi M(a, b) ve yarıçapı r olan bir çember y eksenine teğet ise çemberin yarıçapı |a| olur ve çemberin merkezi a koordinatına bağlı olarak x ekseninin sağında ya da solundadır. M(a,b) ve yarıçapı r olan bir çember, y eksenine teğet ise bu çemberin denklemi: (x−a)2+(y−b)2=a2 şeklinde olur. Aynı denklemi r'ye bağlı olarak (x−r)2+(y-b)2=r2 şeklinde yazarız.

5) Merkezi M(a, b) ve yarıçapı r olan bir çember, x eksenine teğet ise çemberin yarıçapı |b| olur ve çemberin merkezi, b koordinatına bağlı olarak y ekseninin aşağısında ya da yukarısında yer alır. M(a,b) ve yarıçapı r olan bir çember x eksenine teğet ise denklemi: (x−a)2+(y−b)2=b2 şeklinde olur. Aynı denklemi r'ye bağlı olarak (x−a)2+(y-r)2=r2 şeklinde yazarız. 
6) Merkezi M(a, b) ve yarıçapı r olan bir çember, her iki eksene de teğet ise (x ve y eksenine teğet ise) çemberin merkezi M(a,b)=(±r,±r) şeklinde olur ve bölgelere göre dört farklı çember çizilebilir. Çemberin merkezi ve yarıçapı verildiğinde denklemi (x−a)2+(y−b)2=r2 olduğundan; merkez koordinatlarının bölgelere göre a=±r ve b=±r ihtimali olduğundan dört farklı çember yazılabilir. 
 
Buna göre birinci bölgedeki eksenlere teğet çember şöyle olur: (x−r)2+(y−r)2=r2 
İkinci bölgedeki eksenlere teğet çemberin denklemi: (x+r)2+(y-r)2=r2 olur. 
Üçüncü bölgedeki eksenlere teğet çemberin denklemi: (x+r)2+(y+r)2=r2 olur. 
Dördüncü bölgedeki eksenlere teğet çemberin denklemi de (x-r)2+(y+r)2=r2 olur. 
Eksenlere teğet olan bu çemberlerin merkez koordinatları bölgelere göre şöyledir: Birinci bölgede A(r,r) ; ikinci bölgede B (−r,r) ; üçüncü bölgede C(-r,−r) ; dördüncü bölgede D(r,-r) olur.
 
Bir çemberin standart denklemi denklemi (x−a)2+(y−b)2=r2 ifadesi açıldığında x2+y2+Dx+Ey+F=0 şeklinde çemberin genel denklemi elde edilir. Bu denklemde katsayılar olan D, E, F gerçek sayılardır. 

x2+y2+Dx+Ey+F=0 Denkleminin çember belirtmesi için x2 ve y2 terimlerinin denklemde kesinlikle olması ve x2 ve y2 terimlerin katsayılarının birbirine eşit olması gerekir. Ayrıca x.y çarpanı şeklinde bir terim bulunmamalıdır. Ayrıca denklemde elde edilecek r yarıçapının tanımlı olması gerekir. (r>0) 

Merkezi M(a,b) ve yarıçapı r olan çemberin standart denklemi: (x−a)2 + (y−b)2 = r2 çemberin standart denklemi binom özelliğinden yararlanarak azalan kuvvetlere göre açılırsa:
(x−a)2+(y−b)2=r2 x2 − 2ax + a2 + y2−2by + b2 = r2
x2+y2−2ax−2by + (a2+b2−r2) = 0 bulunur.
Bu ifade kısa bir şekilde D, E ve F katsayılarıyla D=−2a, E=−2b ve F=a2+b2−r2 olacak biçimde en sade halde düzenlenirse; x2+y2+Dx+Ey+F=0 çemberin genel denklemi elde edilir. Bu genel çember denkleminde, çemberin merkezi M(-D/2, -E/2) olur.
x2+y2+Dx+Ey+F=0 tam kareye tamamlama işlemi ile yarıçap ve merkez koordinatları D, E ve F cinsinden yazılabilir. Yarıçap ifadesinde eğer karekök içi negatif çıkarsa, bu bir gerçek çember belirtmez. (bu denklemin reel sayılarda çözümü yoktur)

Çemberin genel denklemininde çemberin diskiriminantı denebilecek D2+E2-4F ifadesine göre üç farklı durum söz konusu olur.
1) D2+E2-4F>0 ise verilen denklem bir çember belirtir. 
2) D2+E2-4F=0 ise verilen denklem bir çember belirtmez.Yarıçap r=0 olduğundan bu denklem bir nokta belirtir. Bu nokta çemberin merkez koordinatlarıdır. 
3) D2+E2-4F<0 ise verilen denklem bir çember  belirtmez. Yarıçap ifadesi karekök tanımlı olmadığından hesaplanamaz.
 
Herhangi üç noktadan geçen bir çemberin denklemini bulmak için, çemberin genel denklemini: x2+y2+Dx+Ey+F=0 şeklinde kabul ederiz ve verilen üç noktayı bu denkleme yerleştirerek bir denklem sistemi kurarız. Bu denklem sistemi ikişerli olarak çözülerek D,E,F katsayıları bulunur. Bu katsayılara göre çember denklemi yazılır. 
 
Örneğin verilen 3 nokta: A(1,2), B(2,3), C(1,0) ise bu noktalardan geçen çemberin denklemini bulmak için genel çember denklemi: x2+y2+Dx+Ey+F=0 olarak alınır ve her nokta x ve y yerine koyularak bir denklem sistemi kurulur. 
A(1, 2) noktası için:
12+22+D(1)+E(2)+F=0⇒1+4+D+2E+F=0⇒D+2E+F=−5 
B(2, 3) noktası için: 
4+9+2D+3E+F=0⇒2D+3E+F=−13
C(1, 0) noktası için: 
12+02+D(1)+E(0)+F=0⇒1+D+F=0⇒D+F=−1
Bu üç denklemi kendi arasında ikişerli olarak yoketme metodu ile çözersek sonuçta denklemin katsayılarını D=-6, E=-2 ve F=5 buluruz. Bu katsayılara göre çemberin genel denklemi: x2+y2−6x−2y+5=0 olur. Böylece bu çemberin merkezi M(3,1) ve yarıçapı da r=√5 olur.
 

Çokgenden Pi Sayısına

Pi sayısı, matematikte ilginç bir sayıdır. Herhangi iki sayının birbirine bölümü olarak ifade edilemeyen yani Rasyonel olmayan iraasyonel bir matematik sabitidir. Kısaca tanımlamak gerekirse bir pi sayısı; çemberin çevre uzunluğunun çapına bölümü olarak ifade edebiliriz. 
Pi sayısı için çokgenlerden yola çıkılarak sezgisel olarak yaklaşık bir değere ulaşılabilir. Düzgün çokgenler kullanılarak çevre uzunlukları çap diyebileceğimiz ağırlık merkezlerini herhangi bir köşeye birleştiren doğru parçasına bölerek işlemi sonsuza kadar devam ettiğimizde pi sayısının bilinen 3.14159265359.... değerine yaklaştığını görebiliriz. Bu işlem defalarca çeşitli çokgenler için denendiğinde pi'nin değeri ortaya çıkar. 

Çember ve daire nerede kullanılır?

Çember ve daire, günlük hayatta birçok farklı alanda kullanılmaktadır. İşte çember ve dairenin kullanıldığı bazı alanlar:

1. Matematik: Çember, geometrinin temel şekillerinden biridir ve birçok matematiksel problemde ve formülde yaygın olarak kullanılır.

2. Saatler: Saat kadranı bir çember şeklinde olduğundan, saatin zamanı göstermesi için çemberi temel alır. Saat çerçevesi 360⁰ lik açı 12 eşit parçaya bölünerek saat kısımları işaretlenir. Dairesel şekil, doğrusal olarak kabul edilir ve ibrelerin hareketleriyle uyumludur. Çünkü, ibreler de dairesel bir şekilde, saatin her yerinde aynı mesafeyi koruyarak hareket etmek zorundadır. Bu sebeple saatler yuvarlak olarak tasarlanmıştır. Modern saat ürünlerinin geçmişteki güneş saatlerinden alınan ilhamla yuvarlak şekilde dizayn edildiği de söylenebilir. 

3. Trafik işaretleri: Trafik ışıkları ve yol işaret levhaları, uyarı levhaları genellikle çember ve daire şeklinde düzenlenir. Araçların tekerlekleri çember şeklindedir. 

Çember ve Daire Ünitesi Konu Başlıkları

Çember, düzlemde sabit bir noktaya eşit uzaklıkta bulunan noktaların kümesinin oluşturduğu geometrik şekile verilen isimdir. Düzlemde bir çemberin çevrelediği iki boyutlu yüzeye de daire denir. Çember tanımında bahsi geçen sabit nokta, çemberin merkezidir. Çemberin merkezi ile çember üzerinde alınan herhangi bir noktayı birleştiren doğru parçasına "yarıçap", yarıçapın iki katı uzunluğa da "çap" denir.  Genellikle,yarıçap r (küçük r harfi), çap ise 2r ile gösterilir. Matematikte çevrel çemberin yarıçapını R (büyük R harfi) ile gösteririz. Bu nedenle sıradan bir çemberin yarıçapını R şeklinde büyük harfle gösterek kullanmak hatalıdır. Yarıçap ve çapların uzunlukları sabitdir. 
Çember üzerindeki iki noktayı birleştiren doğru parçasına ise "kiriş" adı verilir. Kirişlerin uzunlukları farklı olabilir. Bu anlamda, merkeze göre birbirine simetrik olan iki noktayı birleştiren doğru parçasının uzunluğu aynı zamanda çapa eşittir. Çap en uzun kiriştir. 
Çemberin iki noktası arasında kalan parçaya "çember yayı" (çember parçası) denir. Çember üzerindeki iki farklı noktadan geçen doğruya "kesen" adı verilir. Bir kesenin, çember içerisinde kalan parçasına da "kiriş" denir. 

Çember, bulunduğu düzlemi; çemberin iç bölgesi, dış bölgesi ve kendisi olmak üzere üç bölgeye ayırır. Çemberin kendisi ve iç bölgesinin birleşiminden daire oluşur.

Çemberin merkezi, merkez açının köşesidir. Çevre açının köşesi, çemberin üzerindedir. Merkez açının içinde kalan çember parçasına, "merkez açının gördüğü yay"; çevre açının içinde kalan çember parçasına, "çevre açının gördüğü yay" denir. Merkez açının ölçüsü gördüğü yayın ölçüsüne eşittir. Çevre açının ölçüsü gördüğü yayın ölçüsünün yarısı kadardır. Merkez açının kenarlarının, çemberi kestiği noktaların arasındaki yaylardan birisi "majör", yani büyük çember yayı, diğeri de "minör", yani küçük çember yayıdır. Merkez açının gördüğü yay, minör yaydır. Merkez açının ölçüsü, 0 ile 180 derece arasında, çevre açı yaylarının ölçüleri ise, 0 ile 360 derece arasındadır. Tüm çemberin ölçüsü 360 derecedir. Radyan cinsinden ölçüldüğünde 2π radyan olur. 

Çemberde açı özellikleri

Çemberde teğet ve kiriş özellikleri

Çemberde Kiriş Özellikleri

Çemberde kiriş uygulamaları

Kirişler Dörtgeni


Çembere teğet çizmek

Çemberde Teğet Özellikleri

Çemberde teğet uygulamaları

Teğetler Dörtgeni


**Çemberde kuvvet fonksiyonu

**Koordinatları verilen noktanın çembere göre kuvveti


**Çemberler yardımıyla fraktal oluşturma


Üçgenin Çevrel Çemberi ve alanı

Üçgenin çevrel çember/sinüs alan formülü

İçteğet çemberi çizilen üçgenin alan formülü

Birim Çember

**Açı Ölçü Birimleri

Sinüs teoremi ve ispatı


Çemberin çevresi ve ispatı

Çemberin çevresinin iple sarılması

**Çemberin çevresi integralle ispatı

Dairenin alanı ve ispatı

Dairede çevre ve alan özellikleri

**Dairenin alanın integralle ispatı


**Pi sayısı

**Pi sayısının tarihçesi


(**) İşaretli olanlar Fen Liseleri, Yeterlilik Sınavları, Olimpiyat/Matematik yarışmaları ve matematik meraklısı her seviye ilim aşığı için hazırlanmış olup, biraz daha ileri matematik konularını ihtiva eden matematik müfredatının daha kapsamlı olduğu alanlar için önceliklidir. 

| | | | Devamı... 0 yorum

Dairede çevre ve alan özellikleri

O merkezli ve r yarıçaplı bir dairenin çevre uzunluğunun, dairenin çap uzunluğuna (2r) oranı π sabit sayısını verir. Buna göre; Çemberin çevresi, çemberi çapı ile pi sayısının çarpımı ile bulunur. (Bkz. Çemberin çevresi ve ispatı) Dairenin alanı; pi sayısı ile dairenin yarıçapının karesinin çarpımı ile bulunur. Dairenin alanını bulabilmek için, bir düzgün çokgenin düzenli olarak kenar sayısı arttırılarak çokgen limit değerinde çembere yaklaştırılır. (Bkz. Dairenin alanı)
| | | | Devamı... 0 yorum

Dairenin alanı integralle ispatı


Bir düzgün çokgende kenar sayısı ne kadar fazla olursa, düzgün çokgen o kadar çembere benzer. Bu durumda bir düzgün çokgende kenar sayısını sonsuza yaklaştırdığımızda, (limit değeri) düzgün çokgen artık çembere dönüşmüş olur. Dolayısıyla n kenarlı (sonsuz kenarlı) çokgenin alanı hesaplandığında, meydana gelen dairenin de alanı bulunmuş olur.  (Bkz. Dairenin Alanı) Bu şekilde dairenin alanın hesaplanmasında, limit yaklaşımı metodu kullanılır. 
Benzer şekilde dairenin alanı, elipsin alanında olduğu gibi integral yardımıyla da hesaplanabilir.  (Bkz. Elipsin alan ispatı) Bu yöntem ile dairenin alanı hesaplanırken; belirli integral ve açısal (kutupsal) dönüşüm kullanılır.

Dairenin alanı ve ispatı

Dairenin alanı; pi sayısı ile dairenin yarıçapının karesinin çarpımı ile bulunur. Dairenin alanını bulabilmek için, bir düzgün çokgenin düzenli olarak kenar sayısı arttırılır. Kenar sayısı ne kadar fazla olursa düzgün çokgen o kadar çembere benzer. Dolayısıyla n kenarlı (sonsuz kenarlı) çokgenin alanı hesaplandığında, meydana gelen dairenin de alanı bulunmuş olur. 

Bir daire esasında daire dilimlerinin toplamından meydana gelmiştir. Bu daire dilimleri, yan yana hiç boşluk kalmayacak şekilde sıralandığında, bir dikdörtgen meydana gelir. Ortaya çıkan bu dikdörtgenin alanı hesaplandığında dairenin alanına ulaşılır. 

Dairenin alan hesabı için, yukarıda anlatılan özellikle ilgili olarak hazırlanmış animasyonu, aşağıdaki videodan izleyebilirsiniz. (Daire Alanı-Youtube)
Yukarıdaki örnek matematiksel olarak ifade edilirse; Bir düzgün çokgende kenar sayısını ne kadar arttırırsak, o çokgen o kadar çembere benzer. Yani çokgenin kenar sayısını sonsuza yaklaştırdığımızda, çokgen (limit değeri) artık çembere dönüşmüş olur. Bu şekilde dairenin alanı hesaplanırken, limit yaklaşımından yararlanılır. (Bkz. sinx/x limiti)

Daire alanındaki mantıkla, benzer şekilde silindirin hacmine de ulaşılır. Yani bir silindir taban dairesi baz alınarak, çok sayıda silindir dilimine ayrıldığında, bu dilimler boşluk kalmayacak şekilde dizilirse ortaya bir dikdörtgen çıkar. Silindirdeki dilim sayısı sonsuz olduğunda, silindirin toplam hacmi, ortaya çıkan dikdörtgenin alanına eşit olacaktır. Konu ile ilgili hazırlanmış silindir hacim materyalini inceleyebilirsiniz.  (Bkz. Silindirin Hacmi Materyali) 

Yarıçapı, r olan dairenin alanı, integral yardımıyla da hesaplanabilir. Bunun için 4 tane eş daire dilimlerinden birinin alanı integralle hesaplandıktan sonra, çeyrek daire diliminin alanı bulunur.  Bulunan bu sonuç, 4 ile çarpılarak tüm dairenin alanı hesaplanmış olur. İntegral hesabında açısal (kutupsal) dönüşüm uygulanır.
Daire diliminin alanı bulunurken, dilimin gördüğü merkez açının ölçüsü bilinmelidir. (Bkz. Çemberde Açılar) Bunun için ya merkez açının ölçüsü verilmeli ya da bu daire dilimini çevreleyen yayın uzunluğu bilinmelidir. Buna göre, oran-orantı yardımıyla daire diliminin alanı hesaplanır.


Çemberin çevresinin iple sarılması

O merkezli ve r yarıçaplı bir dairenin çevre uzunluğunun, dairenin çap uzunluğuna (2r) oranı π sabit sayısını verir. Buna göre; Çemberin çevresi, çemberi çapı ile pi sayısının çarpımı ile bulunur. (Bkz. Çemberin çevresi ve ispatı) Bazı durumlarda birleştirilmiş çemberlerin çevrelerinin  bir kayış ya da ip benzeri araçlarla çevrelenmesi ve gergin biçimde sarılması istenebilir. Bunların çevre uzunluğunun hesaplanmasında çemberin çevre formülü ve oluşacak çokgenlerin çevre formüllerinin toplamının bilinmesi gerekir. 
n tane eş çemberin çevresine gergin sarılan ipin uzunluğu çemberin merkezlerinin birleştirilmesi ile elde edilen n-genin çevre uzunluğu ile bir çemberin çevre uzunluğunun toplamına eşittir. Aşağıdaki şekilden de görüleceği üzere, bir çemberin ertafında sarılacak gergin ipin uzunluğu, 2πr kadardır. 
Aşağıda verilen çeşitli çemberler için çevrelerine gergin ipler sarılmıştır. Bu çemberlerin etrafına sarılan gergin iplerin uzunluklarının nasıl olacağına dikkat ediniz.

| | | Devamı... 0 yorum

Çemberin çevresi integralle ispatı

O merkezli ve r yarıçaplı bir dairenin çevre uzunluğunun, dairenin çap uzunluğuna (2r) oranı π sabit sayısını verir. Buna göre; Çemberin çevresi, çemberi çapı ile pi sayısının çarpımı ile bulunur. (Bkz. Çemberin Çevresi) Çemberin çevresi, yay uzunluğunun toplamını veren integral bağıntısı ile de hesaplanabilir. Bunun için Çember üzerinde alınan rastgele bir P noktasının kutupsal biçimi yazıldıktan sonra çemberin yay uzunluğunun toplamını veren integral yazılır. Aynı metod dairenin alanını veren bağıntı içinde kullanılır. (Bkz. Dairenin Alanı integral ispatı)
| | | | | | Devamı... 0 yorum

Çemberin çevresi ve ispatı

O merkezli ve r yarıçaplı bir dairenin çevre uzunluğunun, dairenin çap uzunluğuna (2r) oranı π sabit sayısını verir. Buna göre; Çemberin çevresi, çemberi çapı ile pi sayısının çarpımı ile bulunur. Çevre formülünün hesabı yapılırken, Archimedes’in (Arşimet) π sayısının değerini elde etmek için kullandığı yaklaşımdan yola çıkılarak ispatlama yapılabilir. Bu yaklaşımda pi sayısı şu gerçeğe dayanır: Bir çemberin çevre uzunluğu, n kenarlı düzgün kirişler ve teğetler dörtgenlerinin çevre uzunlukları arasındadır ve n arttırılarak iki çevre uzunluğu arasındaki sapma azalır. Bu gösterim, çokgenler ile çemberin çevre uzunluğu arasındaki fark yavaş yavaş tüketidiği için "tüketme yöntemi" olarak bilinir. Tüketme yöntemini kullanan Archimedes, π sayısının olduğu aralığı 3+10/71< Pi sayısı<22/7 olarak hesaplamış ve buna göre pi sayısının yaklaşık değerini de 3,14 olarak bulmuştur. 

Archimedes’in Pi saysısının bulunması için gösterdiği bu yaklaşımı, çemberin çevresi için kullandığımızda, çemberin içine çizilen kirişlerin oluşturduğu düzgün çokgenlerin kenar sayısı, ne kadar çok arttırılırsa çokgenin çevresi ile çemberin çevresi birbirine o kadar yakın olur. Buna göre düzgün çokgenin kenar sayısı, sonsuza yaklaştığında ise düzgün çokgen, artık çembere dönüşmüş olur ki bu durumda düzgün çokgenin çevresinin limit değeri, çemberin çevresini verir.


Çemberin çevresi, yay uzunluğunun toplamını veren integral bağıntısı ile de hesaplanabilir. Bunun için Çember üzerinde alınan rastgele bir P noktasının kutupsal biçimi yazıldıktan sonra çemberin yay uzunluğunun toplamını veren integral yazılır. Aynı metod dairenin alanını veren bağıntı içinde kullanılır. (Bkz. Dairenin Alanı integral ispatı)

O merkezli, r yarıçaplı dairede AOB merkez açısının gördüğü yay uzunluğunun ölçüsü |AB|;  oran ve orantı yardımıyla bulunur. Daireyi sınırlayan çember, ölçüsü 360° olan bir yay olarak kabul edilebilir. Buna göre orantı yapılırsa merkez açıya karşılık gelen yayın uzunluğu bulunmuş olur.



Üçgenin çevrel çemberi ve alanı

Herhangi bir üçgenin köşe noktalarından çizilen çembere üçgenin çevrel çemberi denir. Esasında çember üzerinde alınan üç farklı noktayı birleştiren doğru parçaları (kirişler) yardımıyla çember içinde bir üçgen oluşturulur. Çevrel çemberin merkezi üçgenin iç bölgesinde veya dış bölgesinde yer alabilir. Meydana gelen bu üçgenin alanını, çevrel çemberin yarıçapını kullanarak bulabiliriz. Çevrel çember yardımıyla üçgenin alanı hesaplanırken, üçgenin bütün kenar uzunlukları çarpılır ve çarpım sonucu çevrel çemberin yarıçapının dört katına bölünür. Bu şekilde üçgenin alanı bulunmuş olur. 

TEOREM: Bir üçgenin alanı, tüm kenar uzunluklarının çarpımının, çevrel çemberin yarıçapının dört katına bölümüne eşittir. 

İSPAT-1:İspatını yaparken üçgenin sinüs alan formülü kullanılarak ispat yapılabileceği gibi çember özellikleri ve benzerlik kullanılarak da ispatlama yapılabilir. Bunun için bir çember çizelim. Ve çember üzerinde üç farklı nokta alarak bir üçgen oluşturalım. 

Şekilde ABC üçgeni çizilmiştir. Üçgende B noktasından indirdiğimiz yüksekliğe h diyelim. Aynı zamanda, BO doğrultusunu uzattığımızda, O merkezli çemberde |BD| çapını elde etmiş oluruz. ABD üçgeninde A açısı çapı gördüğünden, çapı gören çevre açının ölçüsü 90 derece olur. Aynı yayı gören çevre açılar birbirine eşit olduğu için D açısı ile C açısı birbirine eşittir. (Çünkü D açısı da C açısı da AB yayını görüyor.) Bu açıların ölçülerini y olarak adlandıralım. Üçgenin iç açıları toplamı 180 derece olduğu için, BEC üçgenindeki B açısıyla, ABD üçgenindeki B açısı birbirine eşittir. Bu açılara da x diyelim. x+y=90 derece olur. Şekilden de görüldüğü gibi BEC ve BAD üçgenlerinin iç açıların ölçüleri birbirine eşittir. Yani bu iki üçgen arasında açı açı açı benzerliği (AAA Benzerliği) vardır. 

Benzelik teoremi gereğince bu iki üçgende, açıların gördükleri kenarların oranları birbirine eşit olduğundan, 90 derecenin gördüğü kenarların oranı ile, y açılarının gördükleri kenarların oranı birbirine eşit olur. Buradan, a/(2.R) oranının h/c oranına eşit olduğu görülür. Bu eşitlik düzenlenip h tek başına bırakıldığında; yüksekliği h=(a.c)/(2.R) olarak buluruz. ABC üçgeninde alan formülü olan taban uzunluğu ile yüksekliğin çarpımının yarısı formülü uygulandığında, taban uzunluğu b, tabana ait yükseklik h olmak üzere, Alan(ABC)= (h.b)/2 olur. h yerine yukarıda bulduğumuz eşitliği yazıp düzenlediğimizde, Alan(ABC)=(a.b.c)/(4.R) elde ederiz. 

İSPAT-2:Sinüs alan bağıntısı kullanılarak da aynı formül ispatlanabilir. Bunun için üçgenin sinüs alan formülü yazılır ve buradan sinüs teoreminden elde edilen eşitlik yerine yazılarak, çevrel çember alan ispatı yapılmış olur.


Kirişler Dörtgeni

Bir çember üzerinde yer alan iki farklı noktayı birleştiren doğru parçasına "kiriş" adı verilir. Çember üzerinde alınan dört farklı noktanın kirişler yardımıyla birleştirilmesiyle bir dörtgen meydana gelir. Köşe noktaları bir çember üzerinde buluna bu dörtgene "kirişler dörtgeni"  denir. 

Küre yüzeyinde katı açı kavramı

Steradyan: kürenin merkezini tepe olarak alan ve küre yüzeyinde bu kürenin yarıçapına eşit bir kare kadar alan ayıran uzay açısına eşittir. Boyutsuz bir büyüklük olup, 1995 yılından itibaren türetilmiş steradyan (sr) birim olarak tanımlanmıştır. Steradyen eskiden bir SI tamamlayıcı birimi iken bu kategori, 1995 yılında Uluslararası ölçü birimleri standartlarına (SI: Système International (d'unités)) içeriğinden kaldırılarak, steradian SI türetilmiş bir birim olarak kabul edilmiştir. Steradyan (Katı açı), genelde Omega (Ω) sembolü ile gösterilir. Standart kısaltması "sr" olarak verilmiştir. 
| | | | | Devamı... 0 yorum

Açı ölçü Birimleri

Açı ölçü birimi olarak genellikle günlük hayatta derece birimi kullanılır. Dereceden başka açı ölçü birimi olarak özellikle trigonometri alanında sıklıkla radyan birimi kullanılır. Grad da bir başka ölçü birimidir. Haritacılık ve askeri alanlar gibi daha hassas ölçüm gerektiren yerlerde sıklıkla grad birimine ihtiyaç duyulur. Küre yüzeyinde de açıları ifade edebilmek için, steradyan (katı açı) birimi tanımlanmıştır.

Derece; bir çemberin çevre yay uzunluğu, 360 eş parçaya ayrıldığında bu parçalardan her birinin merkezle oluşturduğu açının ölçüsü, 1 derece olarak ifade edilir.
| | | | Devamı... 0 yorum

Aşağıdaki Yazılar İlginizi Çekebilir!!!

Matematik Konularından Seçmeler