Çemberin parametrik denklemi

Bir çemberin parametrik denklemi, genellikle merkez koordinatları ve yarıçapına bağlı olarak trigonometriden yararlanılarak yazılır. Bir çemberin merkezi (a,b) ve yarıçapı r ise bu çemberin parametrik denklemi t bir açı olmak üzere: x(t)=a+r.cos⁡(t) ve y(t)=b+r.sin⁡(t) şeklindedir. Merkezil çemberin merkezi M(0,0) orijindir.

Çemberlerin birbirine göre durumları

Düzlemde verilen iki çemberin birbirine göre 3 temel durumu vardır. İki çemberin merkezleri arasındaki mesafeye d ve yarıçaplarına r1 ve r2 dersek buna göre çemberlerin durumlarını şöyle açıklayabiliriz: 
1) Çemberler birbiriyle kesişmez.Yani çemberlerin hiç ortak noktaları yoktur. d>r1+r2 

Çemberle doğrunun birbirine göre durumları

Bir düzlemde verilen bir çember ile bir doğru arasında üç temel durum vardır: 
1) Doğru Çemberi Kesmez (Çemberle doğrunun ortak bir noktası yoktur. Dıştan Ayrık) 
Verilen doğru ile çemberin kesişim kümesi boş küme ise doğru çemberin dışındadır. Bu durumda doğrunun çemberin merkezine uzaklığı d ve çemberin yarıçap uzunluğu r ise doğru ile çemberin merkezinin uzaklığı (d ile r) arasında d>r ilişkisi vardır Böylece doğru çemberi kesmez, doğru bu durumda çemberin dışında yer alır. Doğru ile çember denklemi birbirine eşitlenip ortak çözüm yapıldığında,  elde edilen ikinci dereceden tek değişkenli denklemin diskriminant değeri, sıfırdan küçük olur. Yani düzlem geometride denklemin reel kökü olmaz.
2) Doğru Çembere teğet olur. (Çemberle doğrunun ortak sadece bir noktası  vardır.)
Verilen doğru ile çemberin kesişim kümesi sadece tek nokta ise doğru çembere teğet olur. Bu durumda doğrunun çemberin merkezine uzaklığı d ve çemberin yarıçap uzunluğu r ise doğru ile çemberin merkezinin uzaklığı (d ile r) arasında d=r ilişkisi vardır Böylece doğru çembere teğet olur. Doğru ile çember denklemi birbirine eşitlenip ortak çözüm yapıldığında, elde edilen ikinci dereceden tek değişkenli denklemin diskriminant değeri sıfıra eşit olur. Yani denklemin tek kökü olur.
3) Doğru Çemberi iki farklı noktada keser. (Çemberle doğrunun iki ortak noktası  vardır.)
Verilen doğru ile çemberin kesişim kümesi iki farklı nokta ise doğru çembere teğet olur. Bu durumda doğrunun çemberin merkezine uzaklığı d ve çemberin yarıçap uzunluğu r ise doğru ile çemberin merkezinin uzaklığı (d ile r) arasında d<r ilişkisi vardır Böylece doğru çemberi keser. Doğru ile çember denklemi birbirine eşitlenip ortak çözüm yapıldığında, elde edilen ikinci dereceden tek değişkenli denklemin diskriminant değeri sıfırdan büyük olur. Yani denklemin iki farklı kökü olur.

Çemberin Analitik incelemesi

Geometri biliminde düzlemdeki sabit bir noktaya (merkez) eşit uzaklıktaki sonsuz sayıdaki noktaların oluşturduğu kümeye (kapalı eğriye) "çember" denir. Çemberin üzerindeki noktalara eşit uzaklıkta bulunan, çemberin tam ortasında yer alan sabit noktaya "çemberin merkezi" denir ve genellikle M veya O harfi ile gösterilir. Merkezi (a,b) olan ve yarıçapı r olan bir çember; Ç(M,r) şeklinde yazılır.  Çember merkezi ile çember üzerindeki herhangi bir nokta arasındaki uzaklığa çemberin "yarıçapı" denir ve genellikle "r" harfi (radius) ile gösterilir. Çemberin merkezinden geçerek çemberin üzerinde bulunan herhangi iki noktayı birleştiren en uzun doğru parçasına "çap" (diameter) adı verilir ve 2r ile gösterilir. 
Bir çemberin yay uzunluğunun tamamını veren ifadeye "çemberin çevresi" denir ve çemberin çevresi Çevre= 2πr formülüyle hesaplanır. Çemberin kendisi ve çemberin iç bölgesi de çembere dâhil edilirse bu plaka biçimine "daire" denir, daire bir yüzey (alan) belirtir. Yarıçapı r olan dairenin alanı: Alan=π.r2 formülüyle bulunur. Alan ve çevrede kullanılan π sayısı irrasyonel bir sayıdır. π=3.14159265359... devam eden irrasyonel sabit bir sayıdır.
Merkezi M(a,b) ve yarıçapı r olan bir çemberin genel denklemi şu şekildedir: (x−a)2+(y−b)2=r2 Bu çember denklemi, çember üzerindeki tüm noktaların merkez noktasına olan uzaklığının r olduğunu ifade eder. Esasında çember denklemi analitik geometride iki nokta arası uzaklık formülü ile oluşturulur. 
(x−a)2+(y−b)2=r2 çember denklemine çemberin standart denklemi denir. Örneğin orijin merkezli ve yarıçapı 5 birim olan bir çemberi (x−0)2+(y−0)2=5şeklinde yazabiliriz. Buradan orijin merkezli bu çember; x2+y2=25 olur. Merkez (3, -2) ve Yarıçapı r=4 olan bir çemberi, (x−3)2+(y+2)2=16 şeklinde yazabiliriz. 

1) Merkezi x ekseni üzerinde olan bir çemberin merkezi noktası M(a, 0) şeklindedir. Yani, merkezi x ekseni üzerinde olan çemberin y-koordinatı sıfırdır. Bu durumda Merkezi x ekseni üzerinde olan bir çemberin genel denklemi şöyle olur:  (x−a)2+y2=r2 olur. Bu çember, x ekseni üzerinde bir noktayı merkez alır ve y ekseni boyunca yukarı ya da aşağıya doğru simetrik olarak uzanır. Örneğin merkezi (2, 0) ve yarıçapı 6 olan bir çemberin denklemini (x−2)2+y2=36 şeklinde yazabiliriz. 

2) Merkezi y ekseni üzerinde olan bir çemberin merkezi M(0,b) şeklindedir. Yani, merkezi y ekseni üzerinde olan bir çemberin x-koordinatı sıfırdır. Bu durumda çemberin genel denklemi şöyle olur: x2+(y-b)2=r2 olur. Bu çember, y ekseni üzerinde bir noktada merkezlenmiştir ve x ekseni boyunca sağa ya da simetrik olarak uzanır. Örneğin; Merkezi (0,−3) ve yarıçapı 5 olan bir çemberin denklemi: x2+(y+3)2=25 olur. 

3) Merkezi orijin M(0, 0) üzerinde olan bir çemberin denklemi çemberin en basit ve standart halidir. Merkezi orijin M(0, 0) ve yarıçapı r olan çemberin denklemi: x2+y2=r2 olur. Bu çember, hem x hem de y eksenine göre simetriktir çünkü merkez orijin üzerindedir.
Örneğin Merkezi M(0, 0) ve yarıçapı 7 olan bir çemberin denklemi: x2+y2=49 şeklindedir. Merkezi M(0, 0) ve yarıçapı 9 olan bir çemberin denklemi: x2+y2=81 şeklindedir. 

Merkezi M(0, 0) ve yarıçapı 1 olan çembere birim çember denir trigonometrik fonksiyonları tanımlamada birim çember kullanılır. Birim çemberin denklemi: x2+y2=1 şeklindedir.

4) Merkezi M(a, b) ve yarıçapı r olan bir çember y eksenine teğet ise çemberin yarıçapı |a| olur ve çemberin merkezi a koordinatına bağlı olarak x ekseninin sağında ya da solundadır. M(a,b) ve yarıçapı r olan bir çember, y eksenine teğet ise bu çemberin denklemi: (x−a)2+(y−b)2=a2 şeklinde olur. Aynı denklemi r'ye bağlı olarak (x−r)2+(y-b)2=r2 şeklinde yazarız.

5) Merkezi M(a, b) ve yarıçapı r olan bir çember, x eksenine teğet ise çemberin yarıçapı |b| olur ve çemberin merkezi, b koordinatına bağlı olarak y ekseninin aşağısında ya da yukarısında yer alır. M(a,b) ve yarıçapı r olan bir çember x eksenine teğet ise denklemi: (x−a)2+(y−b)2=b2 şeklinde olur. Aynı denklemi r'ye bağlı olarak (x−a)2+(y-r)2=r2 şeklinde yazarız. 
6) Merkezi M(a, b) ve yarıçapı r olan bir çember, her iki eksene de teğet ise (x ve y eksenine teğet ise) çemberin merkezi M(a,b)=(±r,±r) şeklinde olur ve bölgelere göre dört farklı çember çizilebilir. Çemberin merkezi ve yarıçapı verildiğinde denklemi (x−a)2+(y−b)2=r2 olduğundan; merkez koordinatlarının bölgelere göre a=±r ve b=±r ihtimali olduğundan dört farklı çember yazılabilir. 
 
Buna göre birinci bölgedeki eksenlere teğet çember şöyle olur: (x−r)2+(y−r)2=r2 
İkinci bölgedeki eksenlere teğet çemberin denklemi: (x+r)2+(y-r)2=r2 olur. 
Üçüncü bölgedeki eksenlere teğet çemberin denklemi: (x+r)2+(y+r)2=r2 olur. 
Dördüncü bölgedeki eksenlere teğet çemberin denklemi de (x-r)2+(y+r)2=r2 olur. 
Eksenlere teğet olan bu çemberlerin merkez koordinatları bölgelere göre şöyledir: Birinci bölgede A(r,r) ; ikinci bölgede B (−r,r) ; üçüncü bölgede C(-r,−r) ; dördüncü bölgede D(r,-r) olur.
 
Bir çemberin standart denklemi denklemi (x−a)2+(y−b)2=r2 ifadesi açıldığında x2+y2+Dx+Ey+F=0 şeklinde çemberin genel denklemi elde edilir. Bu denklemde katsayılar olan D, E, F gerçek sayılardır. 

x2+y2+Dx+Ey+F=0 Denkleminin çember belirtmesi için x2 ve y2 terimlerinin denklemde kesinlikle olması ve x2 ve y2 terimlerin katsayılarının birbirine eşit olması gerekir. Ayrıca x.y çarpanı şeklinde bir terim bulunmamalıdır. Ayrıca denklemde elde edilecek r yarıçapının tanımlı olması gerekir. (r>0) 

Merkezi M(a,b) ve yarıçapı r olan çemberin standart denklemi: (x−a)2 + (y−b)2 = r2 çemberin standart denklemi binom özelliğinden yararlanarak azalan kuvvetlere göre açılırsa:
(x−a)2+(y−b)2=r2 x2 − 2ax + a2 + y2−2by + b2 = r2
x2+y2−2ax−2by + (a2+b2−r2) = 0 bulunur.
Bu ifade kısa bir şekilde D, E ve F katsayılarıyla D=−2a, E=−2b ve F=a2+b2−r2 olacak biçimde en sade halde düzenlenirse; x2+y2+Dx+Ey+F=0 çemberin genel denklemi elde edilir. Bu genel çember denkleminde, çemberin merkezi M(-D/2, -E/2) olur.
x2+y2+Dx+Ey+F=0 tam kareye tamamlama işlemi ile yarıçap ve merkez koordinatları D, E ve F cinsinden yazılabilir. Yarıçap ifadesinde eğer karekök içi negatif çıkarsa, bu bir gerçek çember belirtmez. (bu denklemin reel sayılarda çözümü yoktur)

Çemberin genel denklemininde çemberin diskiriminantı denebilecek D2+E2-4F ifadesine göre üç farklı durum söz konusu olur.
1) D2+E2-4F>0 ise verilen denklem bir çember belirtir. 
2) D2+E2-4F=0 ise verilen denklem bir çember belirtmez.Yarıçap r=0 olduğundan bu denklem bir nokta belirtir. Bu nokta çemberin merkez koordinatlarıdır. 
3) D2+E2-4F<0 ise verilen denklem bir çember  belirtmez. Yarıçap ifadesi karekök tanımlı olmadığından hesaplanamaz.
 
Herhangi üç noktadan geçen bir çemberin denklemini bulmak için, çemberin genel denklemini: x2+y2+Dx+Ey+F=0 şeklinde kabul ederiz ve verilen üç noktayı bu denkleme yerleştirerek bir denklem sistemi kurarız. Bu denklem sistemi ikişerli olarak çözülerek D,E,F katsayıları bulunur. Bu katsayılara göre çember denklemi yazılır. 
 
Örneğin verilen 3 nokta: A(1,2), B(2,3), C(1,0) ise bu noktalardan geçen çemberin denklemini bulmak için genel çember denklemi: x2+y2+Dx+Ey+F=0 olarak alınır ve her nokta x ve y yerine koyularak bir denklem sistemi kurulur. 
A(1, 2) noktası için:
12+22+D(1)+E(2)+F=0⇒1+4+D+2E+F=0⇒D+2E+F=−5 
B(2, 3) noktası için: 
4+9+2D+3E+F=0⇒2D+3E+F=−13
C(1, 0) noktası için: 
12+02+D(1)+E(0)+F=0⇒1+D+F=0⇒D+F=−1
Bu üç denklemi kendi arasında ikişerli olarak yoketme metodu ile çözersek sonuçta denklemin katsayılarını D=-6, E=-2 ve F=5 buluruz. Bu katsayılara göre çemberin genel denklemi: x2+y2−6x−2y+5=0 olur. Böylece bu çemberin merkezi M(3,1) ve yarıçapı da r=√5 olur.
 

Analitik geometri ne işe yarar?

Analitik geometri, matematiksel ve geometrik problemleri cebirsel yöntemlerle çözmeye yardımcı olan bir alanıdır. Bu konsept, noktaların ve şekillerin koordinatlarını açıklayarak, bunların birbiriyle olan ilişkilerini analiz etmeyi sağlar. Özellikle fizik, mühendislik ve bilgisayar bilimleri gibi alanlarda kullanılan analitik geometri, karmaşık problemleri daha kolay bir şekilde çözmeyi ve görselleştirmeyi sağlar. Bu sayede, uzayda ve düzlemdeki objelerin konumlarını, uzaklıklarını ve ilişkilerini anlamada büyük bir kolaylık sunar.

Dörtgenlerin vektörel alan formülleri

Paralelkenarın alanı vektörel olarak bulunurken, paralelkenarın birbirinden farklı uzunluğa sahip olan kenarlarını taşıyan, taşıyıcı kenar vektörlerinin normları ve bu vektörlerin aralarındaki açının sinüs değerinin çarpımı ile alan hesaplaması yapılır.

Düzlemde Dönüşüm Fonksiyonu ve Öteleme

Düzlemin noktalarını yine düzlemin noktalarına eşleyen bire bir ve örten fonksiyona düzlemin bir dönüşümü adı verilir. Analitik düzlemde verilen herhangi bir nokta düzlemde bir dönüşüm fonksiyonu altında aynı ya da farklı başka bir noktaya eşlenebilir.
Dönüşümler öteleme, yansıma ve dönme başlıkları altında incelenebilir. Bu dönüşümlerin ayrıntılarına geçmeden önce dönüşüm fonksiyonuna biraz örnek vermek yerinde olacaktır.

Koordinatları bilinen üçgen alanı

Köşe koordinatları bilinen üçgenin alanını bulmak için, vektör bileşenlerin determinant kuralından yararlanılır. Determinantta SARRUS Kuralı olarak bilinen determinant hesabı, üçgenlerde köşe koordinatları bilindiği zaman veya köşe koordinatları bir şekilde bulunabildiği zaman, alan hesabında uygulanabilir. 

Elipsin Analitik incelenmesi

Düzlemde sabit iki farklı noktaya  uzaklıkları toplamı sabit olan noktaların geometrik yerine elips denir. Sabit olan bu noktalara elipsin odakları denir. Herhangi bir noktanın, elipsin odaklarına uzaklıkları toplamı, elipsin asal eksen uzunluğu olarak tanımlanır. Elipsin odakları x ekseni üzerinde ise bu elips yatay elips olarak isimlendirilir. Eğer Elipsin odakları y ekseni üzerinde ise bu elips; düşey elips olarak isimlendirilir. 

Yatay elipsin bir köşesi olan y ekseni üzerindeki B noktasından odaklara birer doğru parçası çizilirse burada bir köşesi orijinde olan iki adet dik üçgen meydana gelir ve pisagor bağıntısı bu üçgenler için geçerli olur.

Gündelik Hayatta Hiperbol Biçimleri

Sabit iki noktaya olan uzaklıkları farkı sabit olan noktaların geometrik yerine hiperbol adı verilir. Bu sabit noktalara da hiperbolün odak noktaları denir. Hiperbol eğrileri gündelik hayatta özellikle tasarım ve mimaride sıklıkla karşımıza çıkan matematik kavramlarından biridir. Hiperbolik eğriler son zamanlarda yenilenmiş tasarımlarda ve mimari çizgilerde sıklıkla karşımıza çıkmaktadır.

Hiperbolün Analitik İncelenmesi

Sabit iki noktaya olan uzaklıkları farkı sabit olan noktaların geometrik yerine hiperbol adı verilir. Bu sabit noktalara da hiperbolün odak noktaları denir. Odakları birleştiren doğru parçasının tam orta noktasına hiperbolün merkezi denir. Hiperbolün odakları analitik düzlemde x ya da y ekseni üzerinde olabilir. Merkezi orijin olup odakları x ya da y ekseni üzerinde bulunan hiperbole merkezil hiperbol veya standart hiperbol adı verilir.

Doğrunun Eğiminde Türev

Verilen bir y=mx+n şeklindeki doğrunun eğimi bulunurken türevden yararlanılabilir. Denklemi verilen doğrunun birinci türevi alınırsa doğrunun eğimine ulaşılmış olur. İspatı yapılırken genel türev tanımından yararlanılarak sonuca ulaşılır. Altta doğrusal fonksiyonun eğimini bulurken kullanacağımız türev kuralının ispatı verilmiştir.

Elipsin alanı ve ispatı


Elips, sabit bir noktaya ve verilen bir doğruya uzaklıkları oranı birden küçük bir sayıya eşit olan noktalarının geometrik yeridir. Elipsin alanı integral yardımıyla alan hesabı uygulamalarından yararlanarak bulunabilir. Bunun için elipsin denkleminden yola çıkarak eksenler arasında kalan bölgelerin sınırlandığı bölgelerin uç noktalarını bularak integralle alan ispatı yapılabilir. Elipsin çevre formülünün ispatında olduğu gibi alan ispatında da integral bilgisi gerekmektedir.
Eksen uzunlukları asal eksen 2a ve yedek eksen 2b olan elipsin Alanı (elips) = π.a.b olduğunu elips denkleminden yola çıkarak ispatlayalım.


Elipsin çevresi ve ispatı

Bir koninin bir düzlem tarafından kesilmesi ile elde edilen düzlemsel, ikinci dereceden, kapalı eğridir.Elips, bir düzlemde verilen iki noktaya odak noktası (F1, F2) uzaklıkları toplamı sâbit olan noktaların geometrik yeridir; verilen bu iki noktaya F1 ve F2 noktaları elipsin odakları denir. Odaklarının arasındaki uzunluğa 2c dersek ortadaki nokta elipsin merkez noktasıdır. 
Elipsin x ekseni üzerinde kalan F1 ve F2 noktaları arasındaki uzaklığa orijine eşit olacak biçimde a+a=2a asal eksen, y ekseni üzerinde kalan aynı şekildeki b+b=2b uzunluğuna ise yedek ekseni denir. Aynı zamanda pisagor teoremi gereği burada oluşan dik üçgenden b² + c² = a² bağıntısı bulunur. b ve F1 ile merkez arasındaki doğru parçası, yani c dik kenarlar, a ise hipotenüs´dür.Elipsin 2a büyüklüğünde büyük (büyük ekseni) ve 2b büyüklüğünde küçük ekseni mevcuttur. Elips bunları çap kabul eden küçük ve büyük çemberleri arasında kalır.

Elipsin çevresi yerleşik bilgilere göre Π(a+b) şeklinde verilse de elipsin çevresi ve alanı integral yardımıyla en düzgün biçimde hesaplanır.

Vektörün Normu (Uzunluğu)

Başlangıç noktası orijin olan vektörlere konum(yer) vektörü denir. Eğer vektör orjinde değilse vektörün uzunluğu ve yönünü değiştirmemek kaydıyla orjine taşıyabiliriz. A vektörünün uzunluğu (normu), ||A|| sembolü ile gösterilir."i", "j" ve "k" temel birim vektörleri cinsinden yazılan bir vektörün uzunluk formülü, Pisagor teoreminin bir sonucudur. 

O halde: (i, j, k) standart birim vektörler olmak üzere; A(a,b,c) vektörünün normu temel birimleri ile birlikte üç boyutlu uzayda yazılırsa; A(a,b,c)=a.i+b.j+c.k şeklinde yazılır ve bu A vektörün normu; ||A|| ile gösterilir. Bir A vektörünün normu hesaplanırken, temel standart birim vektörü katsayıları olan (a,b,c) sayılarının karelerinin toplamının karekökü ile bulunur. 

İki boyutlu uzayda, B(x,y) vektörünün normu temel birimleri ile birlikte yazılırsa; B(x,y)=x.i+y.j şeklinde yazılır. ve bu vektörün normu temel birim katsayıları (x,y) karelerinin toplamının karekökü ile bulunur. 

Teorem: Bir V iç çarpım uzayında, vektör normu için aşağıdaki özellikler sağlanır.



Vektörün normu ile ilgili verilen özelliklerden iv) maddenin ispatı için Cauchy-Schwarz eşitsizliğinden yararlanmak gerekecektir. Cauchy Schwarz Eşitsizliği ile ilgili ayrıntılı yazıya ulaşmak için aşağıdaki bağlantıya tıklayınız. (Bkz. Cauchy-Schwarz Eşitsizliği)


Koordinatları Verilen Noktanın Kuvveti

Koordinatları Verilen Noktanın Kuvveti:Herhangi bir noktaya göre çemberde kuvvet alınırken bu nokta çemberin iç veya dış bölgesinde olmasına göre kuvvet alma fonksiyonunda bir farklılık olmaz. Kuvvet alma aslında bu noktanın yardımıyla oluşturulan üçgenler ile meydana gelen bir benzerlik uygulamasıdır.  

Bir noktanın koordinatları ile herhangi bir çembere göre kuvveti alındığında, Kuvvet alma fonksiyonu noktanın çembere göre durumunu belirtir. Yani verilen noktanın,  çemberin iç bölgesinde, çemberin dışında veya çemberin üzerinde  olup olmadığı tanımlanır. 

X noktasının kuvveti denildiğinde, o noktanın merkeze olan uzaklığı koordinatlarda olduğu gibi iki nokta arası uzaklık formülünden bulunur. Daha sonra bu uzaklığın yarıçap ile olan farkları pisagor bağıntısı gereği yazıldıktan sonra, eğer sonuç pozitif tanımlı ise (yani sonuç pozitif çıkar ise) nokta çemberin dış bölgesinde olur. Çünkü  noktanın çember merkezine uzaklığı, çemberin yarıçapından büyüktür. Bu sonuç negatif tanımlı olursa, noktanın çember merkezine olan uzaklığı, çember yarıçapından küçük olduğundan, nokta çember içerisinde kalır. Eğer sonuç 0 çıkarsa o zaman verilen nokta, tam olarak çember üzerindedir. Çünkü noktanın merkeze uzaklığı ile yarıçap uzunluğu birbirine eşittir. 

Bir çemberde herhangi bir noktanın çember denklemine göre kuvveti, aşağıdaki özelliklere sahiptir.


Burada koordinatları verilen noktanın çembere göre kuvveti için gösterilen ispatı, daha iyi anlamak için bir örnek verelim. Örnekte rastgele bir noktanın çembere göre kuvveti alındığında, yani koordinatları çember denkleminde yerine yazıldığında, sonuç negatif çıkarsa bu noktanın çemberin iç bölgesinde olduğu anlaşılır. Aksi halde pozitif tanımlı olması durumunda, nokta çemberin dış bölgesindedir.
 
 
Kaynaklar: Geometri, Arif Şayakdokuyan, Mevsim Basım Yay., Ankara, 2012; Geometri, Turgut Erel, Bilnet Matbaacılık, İstanbul, 2014;  Çember ve Daire, Kartezyen Eğitim Yay. ,İstanbul, 2014.

Noktanın Doğruya Uzaklığı

Bir noktanın doğruya olan en kısa uzaklığı dik olan uzaklıktır. Bu uzaklık da aşağıda gösterildiği şekilde noktanın doğruya uzaklık formülü yardımıyla bulunur.
 

Bir Doğru Parçasını İçten/Dıştan Bölen Nokta

Bir doğru parçasını belli bir oranda içten veya dıştan noktanın koordinatları bulunurken o noktalar arasındaki artış miktarından yola çıkarak verilen orana göre, istenen noktanın koordinatları bulunur.

Noktanın bir doğru parçasını içten veya dıştan bölecek şekilde olması aynı kurala dayanır. İki durumda da benzerlik teoreminden yararlanılarak oluşacak üçgenler arasındaki thales bağıntılarından yola çıkılarak ispat yapılır. Burada elde edilen formülün kullanılması zorunlu olmadığı gibi bazı durumlarda kat hesabı yapmaktan daha zor kullanıma sahip olacaktır. En iyi metot verilen orana göre katları yazdıktan sonra koordinatlar arasındaki farklardan yola çıkarak istenen koordinatın bulunması olacaktır.

Formülü kullanmaktan ziyade aşağıda belirtildiği şekilde 2.yolu kullanmak, çok daha kullanışlı ve güzel bir yöntem olacaktır.

İçten bölen nokta tam olarak doğru parçasını iki eşit parçaya ayırırsa o zaman bu nokta orta nokta olmuş olur ki bunun koordinatlarını bulmak daha kolay hale gelir. Sınır koordinatlarının toplamının yarısı orta noktanın koordinatlarını verir.
Paralelkenar dikdörtgen ve kare gibi şekillerin köşe koordinatları bulunurken de aynı mantıkla hareket edilir. Bu dörtgenlerin köşegenlerinin kesim noktası orta nokta olduğundan yukarıdaki örnekten yararlanarak; orta noktanın koordinatlarının bulunmasından hareketle, paralelkenar ve dikdörtgenlerin de köşe koordinatları bulunabilir. 

Aşağıdaki örnekleri kendiniz çözerek konuyu daha iyi pekiştirebilirsiniz. Cevapları yanlarında verilmiştir. (Doğru parçasının belli bir oranda bölen noktanın koordinatları)
Aşağıdaki örnekleri kendiniz çözerek konuyu daha iyi pekiştirebilirsiniz. Cevapları yanlarında verilmiştir. (Dörtgenlerin köşe noktalarının koordinatlarının bulunması)



İki Nokta Arası Uzaklık ve İspatı

Analitik düzlemde iki nokta arasıuzaklık hesaplaması yapılırken iki noktanıneksenlerde belirlediği  yerlerin arasındaki değişim miktarı dikkate alınır ve buna göre pisagor teoreminden uzaklık bulunur. Yani iki farklı noktanın ordinat bileşenleri farkının karesi ile apsis bileşenlerinin farkının karesi alınıp toplandıktan sonra pisagor teoremi gereği karekökü alınarak iki nokta arasındaki uzaklık bulunumuş olur.

Üçgende Ağırlık Merkezi İspatı

Kenarortay, bir üçgenin herhangi bir kenarını iki eşit parçaya ayıran o kenara karşı köşesinden çizilen doğru parçasıdır. Üçgende kenarortaylar, üçgenin iç bölgesinde bir noktada kesişirler. Bir üçgenin bütün kenarortayların kesişim noktasına, o üçgenin ağırlık merkezi denir. Herhangi iki kenarortay çizildiğinde kesişim noktasından çizilen üçüncü doğru parçası da kenarortay olur. Bir üçgende iki kenarortayın kesişmesiyle oluşan nokta ağırlık merkezidir. Aşağıdaki ABC üçgeninde [BE] ve [CD] kenarortaylarının kesiştikleri G noktasına, ABC üçgeninin ağırlık merkezi denir.

TEOREM: Ağırlık merkezi; üzerinde olduğu kenarortayı, kenara 1 birim, köşeye 2 birim olacak şekilde parçalara ayırır. Aşağıdaki şekilde ağırlık merkezinin benzerlik yardımıyla ispatı verilmiştir. 

TEOREM: Bir üçgenin ağırlık merkezinin, üçgenin herhangi bir köşesine olan uzaklığı, bu köşeden geçen kenarortayın uzunluğunun 2/3'üne eşittir. Aşağıdaki şekilde bu teoremin benzerlik yardımıyla ispatı verilmiştir. 


TEOREM: Üçgenin ağırlık merkezi ile orta tabanının kenarortay üzerinde ayırdığı uzunluklar köşeden kenara doğru sırasıyla 3, 1 ve 2 sayılarıyla orantılıdır.  Aşağıdaki şekilde bu teoremin benzerlik yardımıyla ispatı verilmiştir. 
TEOREM: Dik üçgende hipotenüse ait kenarortay uzunluğunun hipotenüs uzunluğunun yarısıdır.  Aşağıdaki şekilde bu teoremin benzerlik yardımıyla ispatı ve çemberde açılar yardımıyla ispatı verilmiştir. (Bkz. Çemberde Açılar)


Kenarortaylar üçgenin alanını altı eşit parçaya bölerler. G ağırlık merkezinden köşelere doğru parçası ile  birleştirildiğinde üçgenin alanı, üç eşit parçaya bölünür. G ağırlık merkezi, kenarların orta noktaları ile birleştirildiğinde, üçgenin alanı üç eşit parçaya bölünür. Kenarların orta noktalarını birbirine birleştirdiğimizde üçgenin alanı dört eşit parçaya bölünür. 

Üçgenin ağırlık merkezi, köşe koordinatları verilirse koordinat ekseninde daha kolay hesaplanabilir. Ağırlık merkezinin bulunabilmesi için, üçgenin köşe noktalarının koordinatları verilmeli ya da üçgenin köşe koordinatları, analitik geometri işlemlerinden/kurallarından yararlanarak, nokta ve doğru analitiğinin çeşitli uygulamalarıyla bulunabilmelidir.
TEOREM: Üçgenin köşe koordinatlarının apsis ve ordinat değerlerinin kendi aralarında toplamının üçe bölümü, o üçgenin ağırlık merkezinin koordinatlarını verir.

Aşağıdaki Yazılar İlginizi Çekebilir!!!

Matematik Konularından Seçmeler