Net Fikir » analitik geometri
Çemberin parametrik denklemi
Çemberlerin birbirine göre durumları
Çemberle doğrunun birbirine göre durumları
Çemberin Analitik incelemesi
Buna göre birinci bölgedeki eksenlere teğet çember şöyle olur: (x−r)2+(y−r)2=r2İkinci bölgedeki eksenlere teğet çemberin denklemi: (x+r)2+(y-r)2=r2 olur.Üçüncü bölgedeki eksenlere teğet çemberin denklemi: (x+r)2+(y+r)2=r2 olur.Dördüncü bölgedeki eksenlere teğet çemberin denklemi de (x-r)2+(y+r)2=r2 olur.
Merkezi M(a,b) ve yarıçapı r olan çemberin standart denklemi: (x−a)2 + (y−b)2 = r2 çemberin standart denklemi binom özelliğinden yararlanarak azalan kuvvetlere göre açılırsa:
(x−a)2+(y−b)2=r2 ⮕ x2 − 2ax + a2 + y2−2by + b2 = r2
x2+y2−2ax−2by + (a2+b2−r2) = 0 bulunur.
Bu ifade kısa bir şekilde D, E ve F katsayılarıyla D=−2a, E=−2b ve F=a2+b2−r2 olacak biçimde en sade halde düzenlenirse; x2+y2+Dx+Ey+F=0 çemberin genel denklemi elde edilir. Bu genel çember denkleminde, çemberin merkezi M(-D/2, -E/2) olur.
Analitik geometri ne işe yarar?
Analitik geometri, matematiksel ve geometrik problemleri cebirsel yöntemlerle çözmeye yardımcı olan bir alanıdır. Bu konsept, noktaların ve şekillerin koordinatlarını açıklayarak, bunların birbiriyle olan ilişkilerini analiz etmeyi sağlar. Özellikle fizik, mühendislik ve bilgisayar bilimleri gibi alanlarda kullanılan analitik geometri, karmaşık problemleri daha kolay bir şekilde çözmeyi ve görselleştirmeyi sağlar. Bu sayede, uzayda ve düzlemdeki objelerin konumlarını, uzaklıklarını ve ilişkilerini anlamada büyük bir kolaylık sunar.
Düzlemde Dönüşüm Fonksiyonu ve Öteleme
Dönüşümler öteleme, yansıma ve dönme başlıkları altında incelenebilir. Bu dönüşümlerin ayrıntılarına geçmeden önce dönüşüm fonksiyonuna biraz örnek vermek yerinde olacaktır.
Koordinatları bilinen üçgen alanı
Elipsin Analitik incelenmesi
Gündelik Hayatta Hiperbol Biçimleri
Hiperbolün Analitik İncelenmesi
Doğrunun Eğiminde Türev
Elipsin alanı ve ispatı
Elipsin çevresi ve ispatı
Vektörün Normu (Uzunluğu)
Başlangıç noktası orijin olan vektörlere konum(yer) vektörü denir. Eğer vektör orjinde değilse vektörün uzunluğu ve yönünü değiştirmemek kaydıyla orjine taşıyabiliriz. A vektörünün uzunluğu (normu), ||A|| sembolü ile gösterilir."i", "j" ve "k" temel birim vektörleri cinsinden yazılan bir vektörün uzunluk formülü, Pisagor teoreminin bir sonucudur.
O halde: (i, j, k) standart birim vektörler olmak üzere; A(a,b,c) vektörünün normu temel birimleri ile birlikte üç boyutlu uzayda yazılırsa; A(a,b,c)=a.i+b.j+c.k şeklinde yazılır ve bu A vektörün normu; ||A|| ile gösterilir. Bir A vektörünün normu hesaplanırken, temel standart birim vektörü katsayıları olan (a,b,c) sayılarının karelerinin toplamının karekökü ile bulunur.
İki boyutlu uzayda, B(x,y) vektörünün normu temel birimleri ile birlikte yazılırsa; B(x,y)=x.i+y.j şeklinde yazılır. ve bu vektörün normu temel birim katsayıları (x,y) karelerinin toplamının karekökü ile bulunur.
Teorem: Bir V iç çarpım uzayında, vektör normu için aşağıdaki özellikler sağlanır.
Vektörün normu ile ilgili verilen özelliklerden iv) maddenin ispatı için Cauchy-Schwarz eşitsizliğinden yararlanmak gerekecektir. Cauchy Schwarz Eşitsizliği ile ilgili ayrıntılı yazıya ulaşmak için aşağıdaki bağlantıya tıklayınız. (Bkz. Cauchy-Schwarz Eşitsizliği)
Koordinatları Verilen Noktanın Kuvveti
Koordinatları Verilen Noktanın Kuvveti:Herhangi bir noktaya göre çemberde kuvvet alınırken bu nokta çemberin iç veya dış bölgesinde olmasına göre kuvvet alma fonksiyonunda bir farklılık olmaz. Kuvvet alma aslında bu noktanın yardımıyla oluşturulan üçgenler ile meydana gelen bir benzerlik uygulamasıdır.
Bir noktanın koordinatları ile herhangi bir çembere göre kuvveti alındığında, Kuvvet alma fonksiyonu noktanın çembere göre durumunu belirtir. Yani verilen noktanın, çemberin iç bölgesinde, çemberin dışında veya çemberin üzerinde olup olmadığı tanımlanır.
Noktanın Doğruya Uzaklığı

Bir Doğru Parçasını İçten/Dıştan Bölen Nokta
Noktanın bir doğru parçasını içten veya dıştan bölecek şekilde olması aynı kurala dayanır. İki durumda da benzerlik teoreminden yararlanılarak oluşacak üçgenler arasındaki thales bağıntılarından yola çıkılarak ispat yapılır. Burada elde edilen formülün kullanılması zorunlu olmadığı gibi bazı durumlarda kat hesabı yapmaktan daha zor kullanıma sahip olacaktır. En iyi metot verilen orana göre katları yazdıktan sonra koordinatlar arasındaki farklardan yola çıkarak istenen koordinatın bulunması olacaktır.
Formülü kullanmaktan ziyade aşağıda belirtildiği şekilde 2.yolu kullanmak, çok daha kullanışlı ve güzel bir yöntem olacaktır.
İki Nokta Arası Uzaklık ve İspatı
Üçgende Ağırlık Merkezi İspatı
Üçgenin ağırlık merkezi, köşe koordinatları verilirse koordinat ekseninde daha kolay hesaplanabilir. Ağırlık merkezinin bulunabilmesi için, üçgenin köşe noktalarının koordinatları verilmeli ya da üçgenin köşe koordinatları, analitik geometri işlemlerinden/kurallarından yararlanarak, nokta ve doğru analitiğinin çeşitli uygulamalarıyla bulunabilmelidir.











































