İki yönlü çapraz tablo, diğer bir adıyla iki boyutlu kontenjans tablosu, istatistiksel araştırmalarda iki kategorik değişken arasındaki ilişkiyi görselleştirmek ve analiz etmek için kullanılan temel araçlardan biridir. Bu tablolar, bir değişkenin kategorilerini satırlarda, diğer değişkenin kategorilerini ise sütunlarda gösterir ve her hücrede iki değişkenin kesişimine ait gözlem sayısı, yani frekans değeri yer alır. Böylece, araştırmacılar değişkenler arasındaki olası ilişkileri hem sayısal hem de görsel olarak değerlendirme imkânı bulurlar.
İki yönlü çapraz tabloların en önemli özelliklerinden biri, iki kategorik değişken arasındaki ilişkiyi ortaya koymalarıdır. Tabloyu inceleyerek hangi kategorilerin birlikte daha sık veya daha az gözlendiği görülebilir. Örneğin, bir araştırmada cinsiyet ile spor yapma durumu arasındaki ilişki inceleniyorsa, tablo sayesinde erkeklerin ve kadınların spor yapma alışkanlıkları karşılaştırılabilir. Hücrelerde sadece gözlem sayıları değil, aynı zamanda yüzde veya oran değerleri de gösterilebilir. Bu, özellikle farklı büyüklükteki grupların karşılaştırılmasında anlamlı bilgiler sağlar. Örneğin, bir okulda erkek ve kız öğrencilerin spor yapma oranlarını karşılaştırmak istiyorsanız, hücrelerdeki yüzdeler gruplar arasındaki farklılıkları daha net bir biçimde gösterir.
Çapraz tabloların bir diğer avantajı, verileri görselleştirerek
yorumlamayı kolaylaştırmasıdır. Tablodaki sayısal dağılımlar, hangi
kategorilerin birbirine bağlı olabileceğini görsel olarak gösterir ve
araştırmacının ilişkileri hızlıca değerlendirmesine imkân tanır.
Örneğin, erkek ve kadınlar arasında spor eğilimleri hakkında bir
araştırma kapsamında toplanan verilere göre oluşturulan çapraz tabloya
bakarak, erkeklerin spor yapma eğiliminin kadınlara göre daha yüksek
veya düşük olduğunu gözlemlemek mümkündür. Tabloya dönüştürülen veriler
arasında hızlı bir şekilde istatistiksel analiz ve yorumlama
yapılabilir. Çapraz tablo sayesinde araştırmacı, “Erkekler mi, kadınlar
mı daha fazla
spor yapıyor?” gibi soruları hızlıca inceleyebilir ve istatistiksel analiz yapabilir.
İki yönlü çapraz tablolar, istatistiksel test ve analizler için temel oluşturur. İki kategorik değişkende en yaygın olarak kullanılan testlerden biri Ki-kare testidir. Bu test, iki kategorik değişkenin bağımsız olup olmadığını incelemek için kullanılır. Çapraz tabloda yer alan frekanslar ve hücrelerdeki gözlemler, Ki-kare testi hesaplamalarına temel teşkil eder ve araştırmacıya değişkenler arasındaki ilişkinin anlamlı olup olmadığını gösterir.

Ki-kare (x²) testi, iki kategorik değişken arasındaki ilişkinin istatistiksel olarak anlamlı olup olmadığını değerlendirmek amacıyla kullanılan temel bir istatistiksel yöntemdir. Bu test, gözlenen frekanslar ile değişkenlerin bağımsız olması durumunda beklenen frekanslar arasındaki farkları inceleyerek, değişkenlerin birbirinden etkilenip etkilenmediğini ortaya koyar. Ki-kare testi, özellikle nominal veya ordinal ölçekteki kategorik değişkenler için uygundur ve araştırmacılara değişkenler arasında ilişki olup olmadığını güvenilir bir şekilde gösterir.
Testin hesaplama mantığı, her hücredeki gözlenen frekans ile beklenen frekans arasındaki farkın karesinin, beklenen frekansa bölünmesi ve tüm hücreler için bu değerlerin toplamının alınması şeklindedir. Beklenen frekanslar, iki değişkenin bağımsız olması durumunda, satır ve sütun toplamlarının çarpımı ile genel toplamın bölünmesi yoluyla hesaplanır. Örneğin, bir okulda erkek ve kız öğrencilerin spor yapma durumunu inceleyen bir araştırmayı ele alalım. Bu araştırmaya göre erkek öğrencilerden 30’u spor yaparken 20’si yapmamaktadır; kız öğrencilerden ise 25’i spor yapmakta 25'i de spor yapmamaktadır. Bu veriler çapraz tabloda gösterilir. Bu tabloda her hücre için beklenen frekans hesaplanır; örneğin erkek ve spor yapanlar için beklenen frekans, toplam erkek sayısı ile toplam spor yapan sayısının çarpımının genel toplamın bölümüyle bulunur. Gözlenen ve beklenen frekans arasındaki farklar, test istatistiğine katkıda bulunur. Tüm hücreler için hesaplamalar yapıldıktan sonra bulunan x² değeri, istatistiksel tablolar veya yazılımlar aracılığıyla p-değeri ile karşılaştırılır. P-değeri belirlenen anlamlılık düzeyinden (genellikle 0,05) küçük ise, iki değişken arasında istatistiksel olarak anlamlı bir ilişki olduğu sonucuna varılır; aksi takdirde değişkenler bağımsız kabul edilir.
Ki-kare testi, eğitim araştırmalarında öğrencilerin performans ve tercihleri, sağlık araştırmalarında hastalık durumu ile risk faktörleri, sosyal bilimlerde demografik özelliklerle davranış ilişkilerini incelemek gibi pek çok alanda kullanılmaktadır. Bu yönüyle, kategorik verilerin analizi ve ilişkilerin değerlendirilmesi için güvenilir ve etkili bir yöntem olarak kabul edilir.
Konuyu bir çapraz tablo üzerinden basit bir örnekle açıklayalım ve Ki kare hesaplamasını bir hücre üzerinden yapalım:
Bu örnekteki bütün hücreler için geçerli ki-kare testi sonuçları için ayrıntılı olarak aşağıdaki bağlantıyı inceleyebilirsiniz:
Örnekte verilen çapraz tabloda satırlar cinsiyeti (Erkek, Kadın), sütunlar ise spor yapma durumunu (Yapan, Yapmayan) göstermektedir. Her hücre, ilgili kategorilerin kesişimindeki gözlem sayısını ifade etmektedir. Örneğin, tablodaki “Erkek – Spor Yapan” hücresinde yer alan 30 değeri, araştırmaya katılan 50 erkek öğrenciden 30’unun spor yaptığını göstermektedir. Bu tablo sayesinde araştırmacı, “Erkekler mi, kadınlar mı daha fazla spor yapıyor?” gibi soruları hızlıca inceleyebilir ve aynı zamanda Ki-kare testi ile iki değişken arasındaki ilişkinin istatistiksel olarak anlamlı olup olmadığını değerlendirebilir. Sonuç olarak, iki yönlü çapraz tablolar, iki kategorik değişken arasındaki ilişkileri sistematik ve anlaşılır bir şekilde sunmak, frekans ve oran dağılımlarını gözlemlemek ve istatistiksel analizler için temel oluşturmak açısından oldukça değerli araçlardır. Bu tablolar, araştırmacılara hem görsel hem sayısal veri analizi imkânı sunarak bilimsel çalışmalarda güvenilir ve açıklayıcı sonuçlar elde etmelerini sağlar.
Göreli sıklık tablosu
Çapraz tablolarda toplam frekanslara göre izafi %'lik değerler (Göreli sıklık değerleri) hesaplanabilir. Göreli sıklık tablosu, bir veri setindeki her bir kategorinin toplam gözlem sayısına göre oranını veya yüzdesini gösteren tablodur; başka bir deyişle, her kategorinin veri setindeki ağırlığını veya payını görselleştirir. Toplam gözlem sayısı 1 veya yüzde 100 olarak kabul edilir ve her hücrede sadece frekans değil, frekansın toplam içindeki oranı yer alır. Kategorik veriler için yaygın olarak kullanılır ve verilerin dağılımını daha net gösterir. Yukarıdaki spor örneğinde toplam gözlem sayısına göre erkeklerin spor yapma oranı 0,30 (%30), erkeklerin spor yapmama oranı 0,20 (%20), kadınların spor yapma oranı 0,25 (%25) ve kadınların spor yapmama oranı 0,25 (%25) şeklindedir. Yani Toplam öğrencilere göre erkeklerin göreli sıklık değeri 30 ÷ 100 = 0,30 yaklaşık %30 Toplam öğrencilere göre kadınların göreli sıklık değeri 20 ÷ 100 = 0,20 yaklaşık %20 Toplam öğrencilere göre erkeklerin göreli sıklık değeri 25 ÷ 100 = 0,25 yaklaşık %25 Toplam öğrencilere göre kadınların göreli sıklık değeri 25 ÷ 100 = 0,25 yaklaşık %25 olur. Aynı şekilde Spor yapanlara göre erkeklerin göreli sıklık değeri 30 ÷ 55 ≈ 0,545 yaklaşık %54,5 Spor yapanlara göre kadınların göreli sıklık değeri 25 ÷ 55 ≈ 0,455 yaklaşık %45,5 Spor yapmayanlara göre erkeklerin göreli sıklık değeri 20 ÷ 45 ≈ 0,444 yaklaşık %44,4 Spor yapmayanlara göre kadınların göreli sıklık değeri 25 ÷ 45 ≈ 0,556 yaklaşık %55,6 olur.