Rene Descartes ve Felsefe

Descartes (31 Mart 1596 – 11 Şubat 1650) Fransız filozof, matematikçi ve bilim insanıdır. Daha önce birbirinden ayrı olan geometri ve cebir alanlarını birleştirerek analitik geometriyi icat etmiştir. İlk olarak Nassaulu Maurice'in Hollanda Devlet Ordusu'nda ve bir Stadhouder olarak Birleşik Hollanda Cumhuriyeti'nde hizmet veren Descartes, çalışma hayatının büyük bir bölümünü Hollanda Cumhuriyeti'nde geçirdi. Hollanda Altın Çağı'nın en dikkate değer entelektüel şahsiyetlerinden biri[19] olan Descartes ayrıca modern felsefenin kurucularından biri olarak kabul edilir. Descartes'ın modern felsefenin ve birçok yönden modern matematiğin ve matematiksel fiziğin babası olduğu yaygın olarak kabul edilir. Bununla birlikte, Descartes'ta neyin yeni olduğu birçok tartışmanın odağını oluş turmuştur. Bundan dolayı, Descartes'ın matematik felsefesini irdelerken asılsız bir Descartes üzerine değil tarihsel verilerden hareketle “otantik” bir Descartes üzerine eğilmek daha anlamlı olacaktır.Bu yazıda, yazdıklarından yola çıkarak, Descartes'ın özellikle matematik felsefesinin ana hatlarını ele almakla kendimizi sınırlandıracağız. Bunun yanısıra Descartes'ın matematik hakkındaki görüşlerinin zamanla nasıl ve neden değiştiğini inceleyeceğiz. Ayrıca, Descartes'ın görüşlerinin Heidegger tarafından sunulan bir eleştirisini kısaca sunacağız. 1596'da Fransa'da doğmuştur. Eğitimini Cizvit Katoliklerinin bir okulunda tamamlar. 19 yaşında Hukuk Fakültesi'ne kaydolur ve bir yıl sonra okulu bitirir.

Hukukçu olarak yaşamını sürdürmektense orduya katılır. 1619'da, bütün bilgiyi sağlam temellere oturtmaya dair meşhur rüyasını görür ve çalışmalarına başlar. Descartes'ın hayatı boyunca düzenli bir işi olmamış, ailesinin kaynaklarıyla geçinip, ömrünü bilimsel ve felsefi araştırmalara adamıştır. 1620'li yıllardan itibaren yoğun araştırmalara imza atmış ve Avrupa'nın muhtelif bölgelerine seyahatlerde bulunmuştur. 1628'de Hollanda'ya taşınmış ve sonraki yirmi bir yılını orada bir münzevi olarak araştırmalar yapmakla geçirmiştir. 1649'da Kraliçe Christina'nın davetiyle İsveç'e gidince Descartes – alışkanlığının aksine - sabahları çok erken vakitlerde Kraliçe'ye ders vermeye başlar. Bölgenin sert iklimi sabahın soğuğuyla birleşince, Descartes zatürree olur ve İsveç'e gelişinden altı ay kadar sonra ölür. Mathesis Universalis. Ortaçağ ve Rönesans boyunca, Avrupa'daki Aristoculuğun veya skolastizmin etkisinden dolayı, diyalektik veya mantık, eğitimin en önemli disiplini olarak kabul edilmiştir.

Descartes, 1619-1628 yılları arasında tuttuğu notlardan oluşan ve ölümünden sonra yayınlanan Regulae adlı çalışmasında birçok kez diyalektiğe saldırır ve matematiği (Descartes'ın deyişiyle aritmetikle geometriyi) kesinliğinden dolayı över. Descartes'ın düşüncesinde matematik merkezi konumdadır, öyle ki bu düşünceler bir tür matematikçilik (matematisizm) olarak nitelendirilmiştir.

Descartes, Regulae'de sağlam herhangi bir bilginin matematiksel kanıtların kesinliğini taşıması gerektiğini iddia etmiş ve mathesis universalis (evrensel öğrenme) fikrini genel yöntemini geliştirmek için kullanmıştır. Aslında mathesis universalis Descartes'tan çok önceleri kullanılan bir kavramdır; 16'ıncı yüzyılda mathesis universalis'i kullananların başında Adriaan van Roomen adlı matematikçi gelir. Kavramın kökeni, Aristo'nun prima philosophia kavramına kadar geri götürülür. Regulae'de diyalektikçilerin veya mantıkçıların uzun çıkarım zincirlerinin hiçbir işe yaramadığına değinen Descartes, aritmetik ve geometrinin katıksız düşünceyi esas aldıkları için deneyin neden olabileceği muhtemel yanlışlara maruz kalmadığını belirtir. Descartes, "aritmetik ve geometrinin kanıtlarının kesinliği kadar kesinlik taşıyan nesnelerle ilgilenmeliyiz" der. Yine aynı kısımda şöyle der: Bilinen bütün disiplinler içerisinde, sadece aritmetik ve geometri yanlışlık ve belirsizliğin her tür kusurundan arıdır. Aritmetik ve geometrinin övülmesinin nedeni bu disiplinlerde deneye başvurmaksızın saf akılla çıkarım yapılmasıdır. Descartes her ne kadar çıkarımı övse ve ön plana çıkarsa da, aritmetik ve geometride sezginin öneminden de bahseder. Dolayısıyla Descartes'a göre sezgi de bilimsel bilginin elde edilmesi için gereklidir. 
Descartes'a göre "mathesis universalis" bütün disiplinleri kapsayan veya onları bir kenara iten bir tasarım olmaktan ziyade, bütün disiplinlerde bilimsel bilgi üretiminde kullanılabilecek türden heuristik bir rolü olan rehber bir disiplindir. Başka bir deyişle, Descartes için mathesis universalis, geometri, aritmetik ve diğer matematiksel disiplinler gibi bir disiplindir; bununla birlikte, o, bütün bilimsel bilgi üretiminde buluş yapmaya yarayan bir tür kılavuz olduğu için diğer disiplinlerden önceliklidir, daha özeldir. Bu cümlenin daha iyi anlaşılması için, Descartes'ın aktif bir matematikçi olarak çalışmalarını yürüttüğü ve kendisini sağlam sonuçlara ulaştıracak yöntemler arayışında olduğu hatırlatılmalıdır. Descartes, mathesis universalis'in tam olarak neyi içerdiği hakkında herhangi bir şey söylemiyor, sadece mathesis universalis'in diğer matematiksel disiplinlere nazaran daha basit olduğu veya daha az zorluğa sahip olduğunu belirtmekle yetiniyor.

Joseph Louis Lagrange

Joseph-Louis Lagrange (d. 25 Ocak 1736, Torino - ö. 10 Nisan 1813, Paris) bir İtalyan Aydınlanma Dönemi matematikçisi ve astronomudur. Analiz, sayı kuramı ve klasik ve gök mekaniği alanlarında önemli katkıları olmuştur. Torino Topçuluk Okulu'nda öğretmenlik yaptı (1756), Fagnano ve Euler ile bilimsel konularda mektuplaştı. Çalışmalarını büyük bir bölümü, kurduğu topluluğun yayın organı olan Mélanges de Turin'de yayımlandı; bu topluluk daha sonra Torino Bilimler Akademisi'ne dönüştü. D'Alembert O'nu, Prusyalı Friedrick II'ye tavsiye etti; bunun üzerine kral, Lagrange'yi, 1766'-da, Berlin Bilimler Akademisi'nin matematik bölümünü yönetmek üzere davet etti. Koruyucusunun ölümü üzerine, Paris kenti onu,1772'den beri üyesi olduğu Bilimler Akademisi'nin kıdemli üyesi olarak, tüm gereksimini karşılamak üzere çağırdı (1787). II. yıl Yüksek Öğretmen Okulu'nda, Ecole Polytechnique'de çözümleme dersleri verdi.

Ağırlık ve Ölçüler Komisyonu'na başkanlık etti ve Boylamlar Barosu'nda görev aldı (1795). Paris'te yayımlanan en önemli inceleme kitaplarında, yöntemsel bir bilançosunu yaptığı eski bilgilerin yanı sıra, kendi yazdığı sayısız incelemenin sonuçlarının bir bireşimini yaptı. 1770-1771'de basılmış kitabında n. dereceden genel bir denklemi, cebirsel yöntemle çözme umudunu yitirdi. n, 4'ten büyük olduğunda, çözümde kullanılan yardımcı denklemin derecesinin n'den büyük olduğunu ortaya koydu. İki denklemin kökleri arasındaki bağıntıları inceleyerek, gruplar kuramıyla ilgili birçok teoremi kanıtladı ve Galois'nın çalışmalarına öncülük yaptı.

Mécaniqu-e Analytique (Analitik Mekanik) adlı kitabında, geometriden hiçbir biçimde yararlanmadı: burada Newton kuramının, gezegenlerin devinimine tümüyle uygulanabileceğini gösterdi ve mekaniğin temellerini birleştirdi. Lagrange tam anlamıyla analitik olan yöntemleriyle değişim hesabını, sonsuz küçükler hesabının bağımsız bir kolu olarak oluşturdu. Théorie des fonctions analytiques (Analitik fonksiyonlar kuramı) adlı kitabında (1797), her fonksiyonu Taylor serisine açılımıyla tanımlamaya çalıştı.

Taylor serisinde, kalanın önemini belirtti ve tümüyle cebirsel olduğu düşünülen bir hesapla bunun ardışık türevlerini elde etti. Böylece, diferansiyel ve integral hesabı, sonsuz küçük, limit ve devinim kavramlarına başvurmaksızın kurmak istedi. Euler'in görünüşünden ve Newton'un evren kavramından etkilenen Lagrange'nin yapıtları, çözümleme konusunun matematikte çok büyük bir önem kazanmasını sağlamıştır.
| | 0 yorum

Maurits Cornelis Escher

Maurits Cornelis Escher veya daha çok kullanılan şekliyle M.C. Escher 1898 yılında Hollanda’da doğdu. 1918 yılına kadar, inşaat mühendisi olan babası George Escher, annesi Sarah ve dört erkek kardeşiyle birlikte, doğduğu kent olan Arnhem’de yaşadı.Okul hayatı hiçbir zaman iyi olmayan M.C. Escher, çizimlerini gösterdiği grafik öğretmeni Samuel Jessurun de Mesquita’nın da tavsiyeleriyle grafik üzerine çalışmayı uygun gördü. Grafik eğitiminden mezun olduktan sonra hayatının her zaman önemli bir kısmını oluşturacak olan seyahat zevkinin etkisiyle İtalya’ya seyahat etti ve burada birçok çizim yaptı. 1922 Haziran'ında İspanya’yı ziyaret edip birkaç yıl sonra tekrar İtalya’ya gitti. 1924 yılında burada Jetta Umiker ile evlendi ve çift uzun süre Roma’da yaşadı.
İtalya’nın etkisi çizimlerinden eksilmeyecek, birçok çalışmasında İtalya’ya dair şeyler yer alacaktı. 1935 yılında çok sevdiği İtalya’dan, yükselişteki Faşist hareket yüzünden, ailesiyle beraber İsviçre’ye taşındı. Başlarda İsviçre'yi pek sevemeyen aile, uzun Akdeniz gezilerine çıktı ve bu Akdeniz gezileri de Escher'in eserlerini fazlasıyla etkiledi. 1937'de eserlerinin birkaçını gösterdiği kardeşi Berend, onu matematiğe yönlendirdi ve Escher'i matematikle tanıştıran kişi oldu. 
Escher simetri üzerine çalışmaya okuduğu bazı makalelerin tesiriyle başladı.Bu arada 1937'nin sonlarına doğru ailesiyle Belçika'ya taşındı. 1941'de Alman işgali yüzünden ailesiyle beraber Belçika'dan Hollanda'ya kaçmak zorunda kaldı. Sonraki yıllarda gelecekte çok ünlü olacak birçok çalışmasını yaptı. 1950'lerin ortalarında ilgisi sonsuzluğun (2 boyutlu bir düzlemde) tasvirine kaydı.Daha sonra 1958'de tanıştığı Coxeter ile ömür boyu arkadaş kaldı ve Coxeter'in çalışmaları Escher'in birçok eserine ilham kaynağı oldu. Aynı yıllarda büyük bir üne de kavuşmuştu Escher, 2-boyutlu (2-D) ve 3-boyutlu (3-D) öğeleri aynı anda içeren birçok harika çalışmaya imza attı. 1962'de hastalanıp hastaneye kaldırıldıktan sonra 1964'de yeniden hastalandı. 1970'de tekrar hastaneye kaldırıldı ve 1972 yılının 27 Martında, Hilversum'da kaldığı hastanede vefat etti.Son çalışması, yaklaşık altı ayını almış olan, ve 1969'da gösterime sunduğu "Snakes" idi. M.C. Escher insanı hayran bırakan ve insan zihnini fazlasıyla zorlayan özellikle simetrik ve perspektif konusunda zirvede olan eserleriyle ünlüdür.
Eserlerinin bir çoğunda yoğun bir matematiksel hava yer alır. Son dönemlerindeki eserlerinde sonsuzluk mefhumunu da bulmaktayız, ki belki de bunlar sonsuzluk üzerine yapılmış en ünlü ve profesyonel çalışmalardır. Bugün birçok bilimsel dergide gördüğümüz ve gözlerimizi kamaştıran, kafamızı karıştıran eserlerin üreticisi M.C. Escher'dir.Yaşamı boyunca 448 litograf ve 2000'in üzerinde çizim yapmıştır.Eserlerini 5 ana dönemde ele alarak incelemek eserleri anlamak bakımından çok önemlidir.
1922'ye kadar ki erken dönem çalışmalarında birçok yüz formu ile beraber bazı kompleks yapıtları görüyoruz. Her ne kadar bu ilk dönem gelecek dönemlerdeki eserleri üzerine bize ipucu verse de, bu dönemde yaptıkları ileriki dönemlerde yapacağı eserlere göre çok daha ilkel ve perspektif açısından daha basittir.

1922'den 1935'e kadar olan ve İtalya ağırlıklı çalışmalarında perspektif konusunda inanılmaz bir gelişme dikkat çeker. Çalışmaları daha kompleks bir biçim almıştır ve ilerde ünlü olacak bazı baskı ve litografını bu dönemde yapmıştır. Bunlardan birkaç örnek vermemiz gerekirse; "Tower of Babel" (1928), Castrovalva(1930), "Atrani, Coast of Amalfi" (1931), "Hand with Reflecting Sphere" (1935).
1941'e kadar olan, İsviçre ve Belçika'da geçirdiği zamanlarda yaptığı eserleri başka bir dönem oluşturur. Bu döneme damgasını vuran daha sonraları çok ünlenecek olan simetrik çalışmalarıdır. Aynı zamanda bu dönemde yaptığı eserleri incelediğimizde, yaptığı Akdeniz gezilerinin eserlerinde İsviçre'den de Belçika'dan da fazla etkisi olduğunu görürüz. Bu dönemde yaptığı ünlü eserlere örnek verirsek; "Metamorphosis I" (1937), "Day and Night" (1938), "Sky and Water I" (1938), ve "Metamorphosis II" (1940).
1954'e kadar ki, Hollanda'da geçirdiği bir sonraki dönemde simetri eserlerinin yanı sıra, güçlü 3 boyutlu eserler de yapmıştır. Bu dönemdeki eserlerin bir kısmında 2-boyutlu ve 3-boyutlu öğelerin bir arada kusursuz bir biçimde bağlantılı olarak bulunduğu görülür. Aynı zamanda, sonsuzluk mefhumu üzerine ilk eserlerini de bu dönemde gerçekleştirmiştir. Bu dönemdeki bazı ünlü eserleri, "Reptiles" (1943), "Up and Down" (1947), "Drawing Hands" (1948), "House of Stairs" (1951), ve belki de gelmiş geçmiş en ünlü eseri olan Relativity (1953).
1972'deki ölümüne kadar olan son döneminde, ününün zirvesindedir. Bu dönemde yaptığı eserler hayatı boyunca yaptığı belki en kompleks ve başarılı eserlerdir. Örnek olarak, "Convex and Concave" (1955), "Rind" (1955), "Bond of Union" (1956), "Waterfall" (1961), "Moebius Strip II" (1963), "Metamorphosis III" (1967-1968) ve en son eseri olan "Snakes" (1969).

Constantijn Huygens

Ünlü Hollandalı matematikçi, fizikçi ve astronom; 1629'da The Hague'de doğdu. Babası ünlü bir şair olan Constantijn Huygens'ti. Öğrenimini Leiden ve Breda üniversitelerinde yaptı. Geometri üzerine yapıtlar yayımladıktan sonra fiziğe yöneldi.1655'de kardeşiyle birlikte teleskobu geliştirmeye çalışırken mercekleri parlatmak için yeni bir yöntem buldu. Gök dürbünlerinin uzunluğunu iki katına çıkararak büyüme gücünü çok yükseltti. Bu yöntem sonunda Satürn'ün halkasıyla birinci uydusu Titan'ı (1665), Jüpiter 'deki karanlık lekeleri, Mars'ın dönmesini ve dönemini buldu.1656'da Orion nebulasını gözlemleyen ilk kişi oldu. 
Yıldızların, bir olasılıkla canlı bulunan gezegenlerle çevrili, son derece uzak başka güneşler olduğunu ilk söyleyen de odur.
Yer ile Güneş arasındaki uzaklığın, Yer çapının 124253 katı olduğunu tahmin etti; bu değer günümüzde bulunan değerden yalnızca %7 oranında farklıdır.Yine 1656'da yazdığı De Ratiociniis in Ludo Aleae adıyla, ihtimaller hesabının ilk eksiksiz incelemesini yaptı. Açan ve açılan eğriler teorisini kurdu; bu teori ile eğrilik merkezlerinin tanımını yaptı ve sikloitin özelliklerini buldu. Şisoitin doğrulaştırılmasını başardı, logaritma teorisini kurdu ve zincir eğrisini problemini çözümledi.En ilginç buluşlarını ise fizikte, özellikle mekanik ve optikte yaptı. Louis XIV'e adadığı Horologium oscillatorium (1673) adlı yapıtında saatin hareketini düzenlemek için maddesel sistemlerin dinamiğinin ilk açılımı olan bileşik sarkaç kuramını buldu. Eşzamanlı basit sarkacın varlığını, tersinir sarkaçta, salınım ve asılma eksenleri arasındaki karşıtlığı buldu. Saat hareketinde sarkacı düzenleyici olarak kullandı ve kol saatleri için sarmal bir yayın kullanımını önerdi. İlk rakkaslı saati olan maşalı eşapmanı 1657'de tamamladı ve bir sarkacın tam eşzamanlı olması için izlemesi gereken eğriyi belirledi.
Ayrıca merkezkaç kuvvet kavramını (1673) ve etkin kuvvetler kuramını ortaya attı ve eylemsizlik momentinin tanımını yaptı. 1669'da devinim miktarının ve etkin kuvvetin korunumunu gözleyerek darbe probleminin çözümünü buldu.1663'te Londra Royal Society'ye kabul edildi. 1665'te Jean-Baptiste Colbert tarafından Fransa'ya çağrıldı. 1665-1681 yılları arasında Fransa'da Kraliyet Kütüphanesi 'nde çalıştı. Hollanda'ya döndükten sonra odak uzaklığı çok fazla olan mercekler yaptı. Robert Hooke tarafından 1665'te ortaya atılan ışığın dalga teorisini geliştirdi. Huygens'e göre bütün birincil dalga cepheleri, içlerinde sonsuz sayıda dalgalanmalar barındırıyorlardı. Bunun sayesinde optiğin temel yasalarını kanıtladı.
Optik konusundaki çalışmalarını 1690'da basılan Trait'de la Lumiere (Işığın İzi) adlı kitabında topladı. Bu eserinde ışığın, çok ince esnek bir maddesel ortam olan esirin titreşimlerinden oluştuğunu öne süren bir dalga kuramını benimsedi. Sözkonusu titreşimler bu ortamda madde taşınımı olmaksızın sonlu bir hızda yayılıyordu.Huygens kendi adını alan temel ilkeyi ortaya attı. Bu ilkeye göre; her titreşim merkezi küresel bir dalga yayar ve bu dalganın her noktası da aynı etkiyi gösteren bir titreşim kaynağıdır. Huygens; yansıma, kırılım ve hatta Erasmus Bartholin'in 1669'da bulduğu İzlanda spatındaki çift kırılımı da aynı şekilde açıkladı. Ama parçacık kuramları karşısında, ışığın doğrusal yayılımı üzerine doyurucu bir açıklama getiremedi. Bu başarısızlığın nedenlerinden biri, Fresnel'e kadar gelen fizikçilerin çoğu gibi, titreşimlerin boyuna yayıldığına inanmasıydı. Huygens'te dalga kavramı hala belirsizdi.Daha sonra doğa felsefesine değinen Discours sur la cause de la pesanteur (Yerçekiminin Nedeni Üzerine Konuşma) adlı eseri geldi. Bu eserde, ışığın dalgalı yapıda olduğunu kabul etti ve bu hipotezden gerçek bir fizik teorisi kurdu. Birçok alanı kapsayan önemli çalışmaları arasında en önemlisi Denis Papin ile birlikte ilk ateşli, içten yanmalı makineyi yapmasıdır. Huygens, pratik gerçekleştirmelere ulaşamamış da olsa, bu gibi makinelerin sanayide değerli bir enerji kaynağı olabileceğini öngördü. 1695'te doğduğu yerde yalnızlık ve hastalık içinde öldü. Ölümünden sonra, 1703'te yayımlanan Commentarii de Formandis Poliendisque Vitris ad Telescopia adlı eserinde mercekleri yontma sanatını açıkladı ve yeni metotlar öne sürdü.Bütün eserleri, Gravesande tarafından Christiani Hugenii Zulchemi, dum Viveret Zeleni Toparchae, Opera Varia (1724) adıyla toplandı ve Opera Reliqua ile tamamlanarak 1728'de yayımlandı.
Huygens modern bilimsel anlayışın ilk gerçek temsilcisidir.Bunun iki açıdan başardı: özellikle, deneyci bir fizikçi olarak daha çok kendi ürettiği aletleri kullanıp niteliği yüksek gözlemler yaptı; kuramcı olarak ise değişik sarkaç tiplerinin devinimlerini hesaplayıp, cisimlerin boşlukta düşüşü yasasını Galilei'den daha doyurucu biçimde formülleştirdi ve mekanikte, optikte ve doğa bilimlerinde matematik kullanımını büyük ölçüde geliştirdi.
| | | 0 yorum

Cahit Arf Hayatı

 
Cahit Arf (D. 11 Ekim 1910, Kayalar/Selanik – Ö. 26 Aralık 1997, İstanbul), dünya çapında tanınmış bir matematikçi olmuştur. Henüz iki yaşındayken, Balkan Savaşları sırasında Selanik’in Yunan ordusunun kontrolüne girmesi üzerine ailesi İstanbul’a göç etmiştir. Dört yaşında iken öğrenim hayatına İstanbul’da başlamıştır. 1919 yılında, dokuz yaşında iken ailesiyle birlikte Ankara’ya taşınmış, bir süre sonra tekrar İstanbul’a dönmüş ve ardından İzmir’e yerleşmişlerdir. Cahit Arf’ın matematiğe olan ilgisi İzmir yıllarında belirginleşmiştir. Cahit Arf’ın İzmir’deki öğrenim sürecinde, matematik öğretmeni tarafından Öklid geometrisine ilişkin problemler çözmeye teşvik edildiği bilinmektedir. 1926 yılında ailesi, kendisinin daha nitelikli bir eğitim alabilmesi amacıyla Fransa’da öğrenim görmesinin uygun olacağına karar vermiştir. Bu doğrultuda, Cahit Arf lise öğrenimine devam etmek üzere 1926 yılında Fransa’ya gönderilmiştir. 
Cahit Arf, Fransa’da École Normale Supérieure’de 1932 yılında tamamladığı yükseköğreniminin ardından, Kastamonu Lisesi’ne öğretmen olarak atanmak istemiştir. Ancak çevresinin yönlendirmesi ve desteğiyle, bir süre Galatasaray Lisesi'nde matematik öğretmenliği yaptıktan sonra, 1933 Üniversite Reformu kapsamında İstanbul Üniversitesi Fen Fakültesi’ne doçent adayı olarak atanmıştır. Arf, 1937 yılında doktorasını yapmak üzere Almanya’nın Göttingen Üniversitesi’ne gönderilmiştir. Burada tez danışmanı Helmut Hasse ile birlikte yürüttüğü çalışmalar sonucunda, matematik dünyasında büyük yankı uyandıran ve kendi adıyla anılan “Hasse–Arf Teoremi”ni içeren doktora tezini 1938 yılında tamamlamıştır.  
1938 yılından itibaren Cahit Arf, cebir, sayılar teorisi, elastisite teorisi, analiz, geometri ve mühendislik matematiği gibi çeşitli alanlarda yaptığı araştırmalarla matematik bilimine temel ve kalıcı katkılar sağlamıştır. Hasse’nin önerisiyle bir yıl daha Almanya’da kalarak çalışmalarına devam etmiş ve bu süre zarfında, matematikte önemli bir kavram olarak bilinen “Arf Değişmezleri”ni (Arf Invariants) geliştirmiştir. 

Cahit Arf ve Arf Teoremi

Cahit Arf (1910, Selanik – 26 Aralık 1997, İstanbul), Türk matematik dünyasının en önemli isimlerinden biridir. Kendi adıyla anılan matematiksel kuramları sayesinde uluslararası düzeyde tanınmıştır. Doktorasını yapmak üzere II. Dünya Savaşı dönemlerinde Almanya’ya giden Cahit Arf, burada ünlü matematikçi Helmut Hasse ile birlikte önemli çalışmalar yürütmüştür. Bu çalışmalar sonucunda matematikte Hasse-Arf Kuramı’nı geliştirmiştir. Ayrıca Arf değişmezi, Arf halkaları ve Arf kapanışları gibi kendi adıyla anılan kavramları bilim dünyasına kazandırmıştır. 
Cahit Arf, 1910 yılında Selanik'te dünyaya gelmiştir. 1918-1920 yılları arasında İstanbul Erkek Lisesi’nde öğrenim görmüştür. Mili Eğitim Bakanlığı’ndan kazandığı bursla yüksek öğrenimini Fransa’da, Ecole Normale Supérieure’de tamamlayan Arf, 1932 yılında mezun olmuştur. Türkiye’ye döndükten sonra bir süre Galatasaray Lisesi’nde matematik öğretmenliği yapmıştır. Ardından İstanbul Üniversitesi Fen Fakültesi’nde doçent adayı olarak görev almıştır. Doktorasını tamamlamak üzere 1937 yılında Almanya’ya giden Arf, çalışmaları sonucunda büyük başarılar elde etmiş ve Türkiye’ye döndüğünde İstanbul Üniversitesi Fen Fakültesi’nde profesörlük görevine başlamıştır. Burada ordinaryus profesör unvanını da kazanmış ve 1962 yılına kadar akademik çalışmalarına devam etmiştir. Daha sonra Robert Kolej’de matematik dersleri vermeye başlamıştır. 1964-1965 yılları arasında Fransa’da bulunan Princeton’daki Yüksek Araştırma Enstitüsü’nde konuk öğretim üyesi olarak görev yapmıştır. Aynı yıllarda Türkiye Bilimsel ve Teknik Araştırma Kurumu (TÜBİTAK) bünyesinde bilim kolu başkanlığı görevini üstlenmiştir. Cahit Arf, daha sonra Amerika Birleşik Devletleri’nde araştırmalar ve incelemeler yapmış, Kaliforniya Üniversitesi’nde konuk öğretim üyesi olarak görev almıştır. 
 
| | | 4 yorum

Blaise Pascal (1623 - 1662)

Blaise Pascal, Fransız matematikçi, fizikçi ve düşünürdür. Pascal, 19 Haziran 1623 günü Fransa'da Clermont'ta doğdu. Babası kültürlü bir adamdı. Pascal yedi yaşına gelince, babası Paris'e yerleşti. Yedi yaşına gelen parlak çocuk öğrenimine başladı. Kendisi gibi çok güzel ve kültürlü iki kız kardeşi vardı. Özellikle Jak Qualine, Pascal'ın yaşamında önemli rol oynamıştır. Kız kardeşinin bu etkisi bazen iyi, fakat çoğu kötü yönde olmuştur. Pascal doğduğunda, Descartes yirmi yedi yaşındaydı. Descartes öldükten sonra Pascal daha on iki yıl yaşadı. Newton'dan sadece birkaç yıl önce doğmuştur. Descartes ve Fermat gibi büyük matematikçilerle çağdaş olması bir yerde kendisi için bir şanssızlıktı. Bu nedenle, tek başına oluşturabileceği olasılıklar kuramının keşfini Fermat'la paylaştı. Kendisini harika çocuk diye ünlü yapan geometri çalışmalarında, kendisinden daha az ünlü olan Desargues'dan esinlendi. Daha çok din ve felsefe konularına eğildiği için matematiğe az zaman ayırdı. Kız kardeşi ona bu konuda egemendi. Buna karşın, yapabileceğinin çok daha fazlasını verdi. 
Pascal, çok erken gelişen bir çocuktu. Fakat, vücutça oldukça zayıftı. Bunun tersine, kafası çok parlaktı. Öğrenimi başlangıçta çok başarılı geçiyordu. Çok küçük yaşta olmasına rağmen, matematiğe gösterdiği ilgi çok dikkati çekiyordu. Hatta, matematik problemleriyle gece gündüz uğraşmaya başladı. Sağlığının bozulacağından kuşkulanan babası, bir aralık onun matematik çalışmasına engel olduysa da, onun bu davranışı Pascal'ın matematik çalışmasına daha çok yöneltti. Geometri çalışmak için oyunlarını bıraktı. On iki yaşında babasına, geometrinin ne dernek olduğunu sordu. Euclides'in "Elements" adlı geometri kitabını kısa bir zaman içinde yutarcasına bir roman gibi okudu. Hiç bir yardım görmeden ve hiç bir geometri okumadan, çok küçük yaşta bir üçgenin iç açılarının toplamının 180 derece, yani iki dik açı olduğunu kanıtlamıştır. Daha önce, hiç bir kitabı okumadan, Euclides'in birçok önermesini ispatlamıştır. Yine, Pascal hakkında abartma yapmaktan özellikle kaçınan kız kardeşi Gilbert'in anlattıklarına göre; Pascal Euclides'in ilk otuz iki önermesini Elements adlı kitabındaki sıraya göre bulmuştur. Otuz ikinci önerme ise, bir üçgenin iç açılarının toplamı ile ilgili ispatıdır. 
Pascal on dört yaşına gelince, Mersenne tarafından yönetilen ilmi tartışmalara kabul edildi. Bu tartışmaların yapılması, Fransız İlimler Akademisini doğurdu. Pascal kendi kendine bir geometrici olmuştu. Baba Pascal'ın hükümet makamlarıyla boğuşması aileyi kötü duruma düşürdü. Güzel ve parlak kız kardeşi Jacqueline, vergi konusunda babası ile anlaşmazlığa düşen Cardinal de Richelieu'yu eğlendirmek için, önünde oynatılan bir oyunda kendisini tanıtmadan oyuna çıkar. Kendini hayran eden artistin kim olduğunu öğrenen Cardinal, tüm aileyi bağışlar ve ondan sonra baba Pascal'a bir memurluk verir. 
Pascal, on altı yaşından önce, 1639 yılında, geometri teoremlerden birini ispat etti. On dokuzuncu yüzyılda yaşayan İngiliz matematikçisi ünlü Sylvester, Pascal'ın bu geometrik ispatına "kedi beşiği" adını vermiştir. On altı yaşındayken, konikler üzerine bir eser yazarak, ünlü Descartes'i hayretlere düşürmüştür. On sekiz yaşına gelince, şimdi Paris sanayi müzesinde saklanan hesap makinesini bulmuştur. Fizikte, havanın ağırlığını, sıvıların denge halini ve basıncı hakkında Pascal kanunlarını bulmuştur. Apollonius ve başkalarının çalışmalarını birer sonuç kabul eden dört yüz tane önerine ortaya koymuştur. Bu eserin tümü basılamadığı için, bir daha da ele geçmemek üzere kaybolmuştur. Fakat, Leibniz bu eserin bir kopyasını görmüş ve onu inceleme şanslılığına ermiştir. Pascal'ın bu eseri geometrik bir metrik olmayıp bir izdüşüm geometrisidir. 
Aristo, matematiği çokluklar ilmi diye tanımlıyordu. Oysa Pascal'ın geometrisinde çokluk yoktur. Pascal, on yedi yaşından ölümü olan otuz dokuz yaşına kadar ızdırapsız ve acısız gün görmedi. Hazımsızlık, mide ağrıları, uykusuzluk, yan uyuklamalar ve bu ağrıların verdiği gece kabusları onu  bitirdi. Böyle olmasına karşın, yine de bu ağrılar içinde durmadan çalışıyordu. 
Yirmi üç yaşlarında, kız kardeşinin baskı ve etkisiyle Hristiyan dinine ve bunun içinde bazı tarikatlara girdi. Bu konuda epey sarsıntılar da geçirdi. Fakat, yine onda matematik ağır bastı. Pascal, hurma ağaçları gibi tepeden kurumaya başladı. Aynı yıl hazım organları bozuldu. Bu ara geçici bir felç geçirdi. Bu ona çok ağrılar verdi. Her şeye rağmen, düşüncesi ve kafasının çalışmaları sürüyordu. 1648 yılında Toriçelli'nin (1608 -1647) çalışmalarını inceleyerek, onun da önüne geçti. Yükseklikle basıncın değiştiğini saptadı. 
Descartes, Pascal'la çeşitli konuları konuşmak ve özellikle barometre hakkında bilgi almak için geldi. Bu iki bilginin yaradılış ve ruhsal durumları pek uyuşmuyordu. Descartes, konikler üzerine yazılan eserin on altı yaşında bir çocuk tarafından yazıldığına inanmayı açıkça kabul etmedi. Daha da ileri giderek, Pascal'ın barometre deneyleri düşüncesini, Mersenne'nin çalışmalarından çalmış olmasından şüphelendi. Descartes'le Pascal'ın aralarında çekememezliğe neden olan üçüncü konu din üzerine olan düşüncelerindeki ayrılıklardı. Descartes Cizvitleri tutuyor, Pascal'sa Jansen'in mezhebini savunuyordu. Pascal'ın açık sözlü kız kardeşi Jacqueline'nin sözlerine bakılırsa, bu iki dahi birbirlerini oldukça kıskanıyorlardı. Bu nedenle de, adı geçen yukarıdaki görüşme ve ziyaret soğuk bir buluşma olmuştu. Descartes'in genç dostuna bazı öğütleri oldu. Pascal da onu ciddiye almadı. 
1658 yılının bir gecesinde, uykusuzluk ve diş ağrılarından kıvranan Pascal, korkunç ağrılarını unutmak amacıyla, birçok ünlü matematikçinin uğraştığı zarif sikloid eğrisine daldı. Sikloid eğrileri üzerine o kadar daldı ki, tüm ağrı ve acılarını unuttu. Tam sekiz gün sikloid geometrisi üzerinde çalıştı. Bu eğri ile ilgili olan çeşitli problemleri çözmeyi başardı. Bu buluşlarının bazılarını takma Amos Detonville imzasıyla, Fransız ve İngiliz matematikçilerine meydan ,okumak amacıyla basılmıştır. 
1658 yılında kendini oldukça hasta hissetti. Kısa aralıklarla gelen uyuklamalar dışında, şiddetli ve dinmek bilmeyen baş ağrıları ona çok eziyet ediyordu. Tam dört yıl bu ağrılarla kıvrandı. 1662 yılının haziran ayında otuz dokuz yaşındayken öldü. Ölümünden sonra yapılan otopsisinde, ağrılarının nedeninin ciddi bir beyin hastalığından ileri geldiği saptandı. Pascal, Fermat ile birlikte olasılıklar kuramını kurmakla, yeni bir matematik dünyası meydana getirmişti. Bu kuramın tüm inceliklerini ortaya döktü. Bu kuramı oluştururken, Fermat'la sürekli haberleşmişlerdir. Yapılan bu mektup görüşmeleri incelendiğinde, bu kuramın gerçek kurucularının Pascal ile Fermat'ın eşit payları olduğu görülür. Yaptıkları şeyler temelde aynı, fakat derinlemesine incelendiğinde farklılıklar görülür. Bu arada Pascal'ın düştüğü ufak hatayı Fermat belirtince, Pascal da bu hatasını hemen düzeltti. Bu haberleşmedeki ilk mektuplar kaybolmuşsa da, daha sonraki mektuplar hala eldedir. 
Kumarbaz Chevalier de Mere'den hareketle olasılıklar hesabı üzerine çalışmıştır. Elli iki kağıt oyunu ve tavla zarlarının, şekilleri aynı olan ayrı renkli bilyelerin önemi üzerine yaptığı hesaplamalara bağlı olarak Pascal üçgeni olarak bilinen çalışmasını yayınladı. Pascal'ın bu üçgeni, daha sonraki yıllarda ondan çok daha önceleri Ömer Hayyam tarafından kullanıldığı gösterildi. (Bkz. Ömer Hayyam) Bu çalışma literatüre Pascal'ın ismiyle girmiş olmakla birlikte sonraki yıllarda olasılık kuramında sıklıkla matematikçiler tarafından kullanıldı. Özellikle seri açılımları ve binom açılımı bu yöntemle kolaylıkla bulunmuştur.
| | | 0 yorum

İslam Kütüphanesi Seçmeler

Matematik Seçme Konuları

Aşağıdaki Yazılar İlginizi Çekebilir!!!