İkinci Derece Denklem ve Diskriminant

ax2+bx+c=0  biçimindeki denkleme ikinci dereceden bir bilinmeyenli denklem denir. Burada a, b, c sayılarına denklemin katsayıları, c ye ise sabit terim denir. Bu denklemi sağlayan x gerçek sayı değerleri varsa bunlara denklemin kökleri, köklerin kümesine de denklemin gerçek sayılar (reel sayılardaki) kümesindeki çözüm kümesi denir. Bu denklemin kökleri bulunurken arpanlarına ayrılabiliyorsa denklem çarpanlarına ayrılır. Ve herbir çarpan tek tek 0'a eşitlenerek kökler bulunur. Çarpanlarına kolay yoldan ayrılamayan ikinci derece denklemlerde ise kök formülü kullanılar kökler bulunur. ikinci dereceden bir bilinmeyenli bir denklemin iki farklı gerçek kökü olabileceği gibi bazen bir gerçek kökü olabilir, bazen de hiç gerçek kökü olmayabilir. Bu kök formülünde diskiriminant'a göre kökler reel veya karmaşık olarak karşımıza çıkar. Her iki durumda da aynı kök formülü kullanılarak çözüm kümeleri elde edilir.Rasyonel katsayılı ikinci dereceden bir bilinmeyenli bir denklemin kökleri de birbirinin eşleniği şeklindedir.

Kök formülünün nasıl ortaya çıktığını ispatlayalım.  Burada diskriminant'ın üç durumuna göre denklemin köklerinin farklılaştığı görülebilir.

Harezmi ve ikinci Derece Denklemler

Doğum ve ölüm tarihleri kesin olmamakla birlikte El Harezmi (Ebu Abdullah Muhammed bin Musa) Hazar denizinin doğusundaki Harizm'de (Özbekistan) genel görüşe göre 783 yılında dünyaya geldiği kabul edilmektedir. Meşhur bilim tarihçisi George Alfred Leon Sarton (1884 -1956) "Introduction to the History of Science" ve "E.T. Bell "The Development of Mathematics" eserlerinde, Harizmî'nin 850'de vefat ettiğini kaydetmiştir. Tüm dünyaya ismini, (El Harezmi) – isminin Latince telaffuzu ile - “algoritma” olarak zikrettiren bu Müslüman Türk alimi, cebir ilminin kurucusu olarak kabul edilir. Zaten cebir kelimesi de Harezmi’nin (El Kitab’ül Muhtasar Fi Hisab’il Cebri ve’l Mukabele ) “Cebir ve denklem hesabı üzerine özet kitap” adlı eserinden gelir.
Harezmi, cebir denklemlerinin çözümünde kare ve diktörgen şekillerden yararlanır. Denklem çözümlerinde bu geometrik şekilleri kullandığından, denklemlerde hep artı işaretli terimler göz önünde tutulur. Kare bilinmeyeni, dikdörtgen ise bilinmeyenin sabit bir katını temsil eder. Denklem çözümleri daima pozitif değerler içindir. El-Harezmi, ikinci dereceden denklemlerin çözülmesi için geometrik modellerden de yararlanmıştır.  
El Harezmi, ikinci derece denklemlerin çözümünü çok sade, anlaşılır ve sistematik biçimde yazmıştır. Çözümleri adım adım sistemli bir sıra ile vermiş olması, ‘algoritma’ yöntemlerinin ortaya çıkmasını sağlamıştır. Günümüz dünyasının vazgeçilmez parçası olan algoritma ve bilgisayarların programlama dilleri, Harezmi’nin algoritmik yöntemleri esas alınarak oluşturulmuştur.
Günümüzde kullanılan ikinci derece denklemlerin kök bulma formülü de Harezmi'nin dikdörtgensel çözüm metodundan türemiştir. Diskriminant değerine ilk işaretler de Harezm'in denklem çözümlerinde görülmüştür.

El-Harezmi en genel hali ile ax^2+bx+c=0 şeklinde verilen bir ikinci dereceden denklemin köklerinin çözümünü bulmuştur. Uzun uğraşlar sonrasında, denklemi geometrik bir modelleme ile oluşturup çözüm kümesini bulmayı sağlamıştır. Tabi bu geometrik modellemede çözüm kümesi bulunurken negatif sayılar ihmal edilmiştir. Harezmi denklem çözümünde şu adımları izlemiştir.
Denklem, en genel halinde a, b ve c katsayıları ve x bilinmeyeni içeren ax^2+bx+c=0 şeklinde cebirsel bir ifade olarak yazılabilir. Denklemdeki x^2'li terimi, bir kenarı x’e eşit olan bir kare olarak modellemiştir. Bilinmeyen karesi yani x^2 geometrik olarak kare ile temsil edilebilir. El-Harezmi önce denklemin her iki tarafını denklemin başkatsayısı olan "a" ile bölerek ilk terimin bir kenarı x olan kare haline dönüşmesini sağlamıştır. Bu şekilde kare ve dikdörtgenlerden yararlanarak 2.derece bir denklemin köklerini bulmuştur.
 
Kaynakça: 
Prof. Dr. Şen, Z. 2006. Batmayan Güneşlerimiz. Sayfa 26. 
Göker, Lütfi 1997. Matematik tarihi ve Türk-İslam matematikçilerinin yeri. Düşünce Eserleri Dizisi. Milli Eğitim bakanlığı Yayınları, sayfa 476.

Aşağıdaki Yazılar İlginizi Çekebilir!!!