Net Fikir » matematikçiler » Harezmi ve ikinci Derece Denklemler
Harezmi ve ikinci Derece Denklemler
Etiketler :
denklem
denklem çözümü
diskriminant
harezmi
ikinci derece denklemler
islam dünyasında bilim çalışmaları
matematikçiler
10. yüzyılda yaşıyan ve tüm dünyaya isminin (El Harezmi – Al Khrawarizmi) Latince telaffuzunu “algoritma” olarak zikrettiren bu Müslüman Türk alimi, cebir matematiğinin de kurucusudur. Zaten cebir kelimesi de Harezmi’nin (El Kitab’ül Muhtasar Fi Hisab’il Cebri ve’l Mukabele ) “Cebir ve denklem hesabı üzerine özet kitap” adlı eserinden gelir.
Harezmi, cebir denklemlerinin çözümünde kare ve diktörgen şekillerden yararlanır. Denklem çözümlerinde bu geometrik şekilleri kullandığından , denklemlerde hep artı işaretli terimler göz önünde tutulur.Kare bilinmeyeni, dikdörtgen ise bilinmeyenin sabit bir katını temsil eder. Denklem çözümleri daima pozitif değerler içindir. El-Harezmi, ikinci dereceden denklemlerin çözülmesi için geometrik modeller de kullanır.
İkinci derece denklemlerin çözümünü çok sade, anlaşılır ve sistematik biçimde yazmıştır. Çözümleri adım adım sistemli bir sıra ile vermiş olması, – isminin Latince telaffuzu ile - ‘algoritma’ yöntemlerinin ortaya çıkması sağlamıştır. Günümüzde dünyasının vazgeçilmez parçası bilgisayarların programlama dilleri, Harezmi’nin algoritmik yöntemleri esas alınarak yazılmaktadır.
Günümüzde kullanılan ikinci derece denklemlerin kök bulma formülü de bu dikdörtgensel çözüm metodundan kaynaklanır. Diskrminant değerine ilk işaretler Harezm'in denklem çözümlerinde görülmüştür.
El-Harezmi en genel hali ile aşağıdaki ikinci dereceden denklemin köklerinin çözümünü düşünmüştür. Uzun uğraşılar sonrasında, aklına geometrik bir modelin öncelikle incelene olay esas alınarak kurulmasının gerektiğini düşünmüştür. Denklem, en genel halinde a,b ve c katsayıları ile ve X bilinmeyeni içeren ax^2+bx+c=0 Şeklinde cebirsel olarak yazılabilir. İnsanın aklına buradaki X^2 terimin kenarı X’e eşit olan bir kare oldığı gelmektedir. O halde, bilinmeyen karesi yani X^2 geometrik olarak kare ile temsil edilebilir. El-Harezmi önce denklemin her iki tarafını a ile bölerek ilk terimin bir kenarı X olankare haline dönüşmesini sağlamıştır.Bu şekilde kare ve dikdörtgenlerden yararlanarak 2.derece bir denklemin kökleri bulunmuştur.Ayrıntılı bilgi için: Prof. Dr. Şen, Z. 2006. Batmayan Güneşlerimiz. Sayfa 26. Göker, Lütfi 1997. Matematik tarihi ve Türk-İslam matematikçilerinin yeri. Düşünce Eserleri Dizisi. Milli Eğitim bakanlığı Yayınları, sayfa 476.
Takip et: @kpancar |
|
''Harezmi ve ikinci Derece Denklemler'' Bu Blog yazısı;
Şubat 02, 2014 tarihinde denklem, denklem çözümü, diskriminant, harezmi, ikinci derece denklemler, islam dünyasında bilim çalışmaları, matematikçiler kategori başlıklarında eklenmiş olup Muallim tarafından yayınlanmıştır. Ayrıca henüz yorum yapılmamış bir yazıdır. Yazımızda hatalı bir içerik olduğunu düşünüyorsanız lütfen 'kpancar@yahoo.com' mail adresimize bildiriniz. Dualarınızı bekleriz.
Matematik Konularından Seçmeler
matematik
(209)
geometri
(124)
üçgen
(49)
ÖSYM Sınavları
(46)
trigonometri
(38)
çember
(30)
fonksiyon
(28)
sayılar
(26)
alan formülleri
(25)
türev
(22)
analitik geometri
(19)
denklem
(18)
dörtgenler
(17)
limit
(16)
belirli integral
(13)
katı cisimler
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(4)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)
En Çok Okunan Yazılar
-
x, bir gerçek (reel) sayı olmak üzere, x'ten büyük olmayan en büyük tamsayıya x'in tam değeri denir. Bunu ifade eden fonksiyona tam ...
-
ÖSYM'nin 15/06/2019 Tarihinde gerçekleştirdiği TYT matematik sınavı, farklı tarzda ayırt edici sorular içermekle birlikte, 2018 yılı TY...
-
Bu yazıda Esma-ül Hüsna hakkında kısaca bilgi verildikten sonra Ebced hesabı ile arasındaki ilişkiyi açıklayıp bütün 99 ismin ebced değerle...
-
Koordinat düzleminde çizilen birim çember için çember üzerinde alınan rastgele bir L noktasından x ve y eksenlerini kesecek biçimde bir doğ...
-
Ehl-i Sünnet itikâdını, nazım (şiir) olarak anlatan ünlü ve önemli eserlerden biri; kuşkusuz Emâlî kasidesidir. "Bed'ül Emali&quo...
-
Dar açıların trigonometrik değerleri hesap makinesi yardımıyla bulunabileceği gibi trigonometrik değerler cetvelinden de bulunabilir. Bunun...
-
Trigonometrik değerleri bilinen iki açının toplamının veya farkının trigonometrik değerlerini hesaplamak için kullanılan formüllerdir. Bu f...
0 yorum:
Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."
İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...