Matematik Tarih Şeridi Hazırlanması

Thales (M.Ö. 624-547), Pisagor (M.Ö. 569-500), Zeno (M.Ö. 495-435), Eudexus(M.Ö. 408-355), Öklid (M.Ö. 330?-275?), Arşimed (M.Ö. 287-212), Apollonius (M.Ö. 260?-200?), Hipparchos (M.Ö. 160-125), Menaleaus (doğumu, M.Ö. 80) İskenderiyeli Heron (? -M.S.80) , Batlamyos (85- 165) ve Diophantos (325-400) Eski Yunan (Antik çağ, Grek) matematikçileri; ile Eski Hint, Eski Mısır, Eski Çin Coğrafyasına ait matematikçiler, çalışmalarını yazıya dökebilen matematikçiler olarak, tarih sahnesinde M.Ö. 8. yüzyıl ile M.S. 10. yüzyıl arasında yaşamışlardır. 

Bunların ardından Batı Dünyasında çalışmaların diğer dönemlere göre nisbeten daha çok olduğu 18.yy öncesi matematikçiler birinci grup matematikçileri olarak gösterilebilir: Johann Müller (1436-1476), Cardano (1501-1596), Jean Napier (1550-1617), Gulden (1577-1643), İtalyan Cavalieri (1598-1647), Rene Descartes (1596-1650), Desargues (1593-1662), Pierre Fermat (1601-1663), Blaise Pascal (1623-1662), lsaac Newton (1642-1727), Gottfried Wilhelm Leibniz (1646-1716), Ceva (1648-1734), Mac Loren (1698-1748), Cramer (1704-1752), Riccati (1676-1754), Clairautin (1713-1765), Huygensin (1629-1695), Jean Bernoulli (l667-1748), Jacques Bernoulli (1654-1705), Daniel Bernoulli (1700-1782), Leonard Euler (1707-1783)...

İkinci grup olarak belirttiğimiz Batı Dünyası matematikçileri ise: 18. yüzyıl sonrasında yaşayan matematikçiler sıralanabilir: İkinci grup matematikçilerden bazılarına örnek olarak;  Gespard Monge (1746-1818), Joseph Louis Lagrange (1736-1813),  Carnot (1753-1823), Pierre-Simon Laplace (1749-1827), Joseph Fourier (1768-1830), Galois (1811-1832), Legendre (1752-1833), W. Bessel (1784-1846), Jean-Victor Poncolet (1788-1857), Carl Friedrich Gauss (1777-1855), Augustin-Louis Cauchy (1789-1857), Lobaçevski(1793-1856), Poinsot (1771-1859), Brianchan (1785-1864), Niels Henrik Abel (1802-1829), Jacobi (1804-1851), Nicolas lvanawitch Lobatchewsky (1793-1856), Gerge Boole (1815-1864), William Rawan Hamilton (1805-1865), Gerge Friedrich Berhard Riemann (1826-1866), Dupin (1784-1873), Chasley (1793-1880), Leopold Kronecker (1823-1891),Sonia Kowallewska (1850-1891), Erust Kummer (1810-1893), Cayley (1821-1895), James Joseph Sylvester (1814-1897), Weier-strass (1815-1897), Charles Hermite (1822-1901), Dedekind (1831-1916), H. Poincare (1854-1912) Cantor (1845-1918) en meşhur matematikçilerden bazıları olarak gösterilebilir. 
İki grup halinde sıralanan Batı Dünyası matematikçileri, çalışmalarını genellikle 7. yüzyıl sonrası Türk - İslam Dünyası matematikçilerinin hazırlamış oldukları eserlerden büyük istifadeler sağlayarak yapabilmişlerdir. 7. yüzyıl ile 18. yüzyıl arasında İslam dünyasında yoğun biçimde var olan bu bilimsel çalışmalar; ve bu devirlerde yaşamış olan Türk-İslam Dünyası matematik bilginlerinin varlığı, bilim tarihi şeritlerinde hep görmezlikten gelinmiştir. İslam dünyasının bu dönem çalışmaları, Endülüs Emeviler zamanından itibaren başlayan tercüme hareketleri ile Avrupa'ya aktarıldıktan sonra Batılı ilim adamlarının çalışmalarını geliştirmişler ve hatta bazı bilimsel çalışmalar maalesef Batılı bilim insanlarının kendi çalışmalarıymış gibi dünyaya tanıtılmış ve literatürde onların isimleri ile yer almıştır. Bu zaman dilimlerinde Türk-İslam Dünyasında ciddi matematik çalışmaları yapılmış ve bugün kullandığımız pek çok teoremin bilimsel alt yapısı, bu devirlerde ortaya çıkarılmıştır. Özellikle Ömer Hayyam, Ebul Vefa, Ali Kuşçu, Uluğ Bey, Nasreddin Tusi, Harezmi, El Battani, Kadızade Rumi, Beni Musa Kardeşler, İbn Saffar, Ebu Kamil Şuca, Abdülhamid Türk, ibn Yunus, İbn Havvam, İsmail Gelenbevi, Molla Lütfi, Biruni, Yahya En Nakkaş, ibn Heysem,...gibi pek çok alim, 7.yy ile 18.yy arasında yaşamış çok değerli ilim adamlarımızdan bazılarıdır. Pek çok ilim adamımızın çalışmaları ve yazılı vesikaları, Batı dünyasına kaçırıldığından elimizde bu döneme ait kapsamlı çalışmalar çok azınlıkta kalmıştır. Bu nedenle İslam dünyasında ilmi ilerleme olmadığı hezeyanı dile getirilmiş ve sanki Selçuklu ve Osmanlı dönemlerinde bilim çalışmalarının yok sayıldığı, engellendiği gibi bir izlenim oluşturulmaya çalışılmıştır. Oysa bunun aksine, Batı Dünyasının bazı  insaflı ilim adamlarının çalışmaları ile İslam Dünyasında çok ciddi bilimsel çalışmaların bulunduğu gerçeği son dönemlerde dile getirilmiştir. İslam dünyasında oluşturulan bu algılar; gençlerimizin kendilerini;  'bilimden uzak', 'öz güvensiz' ve 'değersiz' hissetmesi için bilinçli bir şekilde meydana getirilmiştir. 
Cebir, geometri, aritmetik ve trigonometri konularında Batı Dünyasını bugünkü ilerlemeleri sağlayabilecekleri bir zemine, 7-18.yy dönemlerinin Türk-İslam Dünyası matematikçileri taşımıştır.  Özet olarak, Türk-İslam Dünyası matematikçileri, Batı dünyasının ilmi düşünce ve araştırma duygularını ateşleyerek harekete geçirip beslediler ve yeni bir canlılık kazandırdılar diyebiliriz. 
Bu noktada Türkiye'den bu çalışmalara örnek olarak Salih Zeki (ö.1921), Feza Gürsey (ö.1921), Gündüz İkeda (ö.1926), Mehmet Nadir (ö.1927), Kerim Erim (ö.1952), Mehmet Fatin Gökmen (1955), Nazım Terzioğlu (ö.1976),  Cahit Arf (ö.1997), Paris Pişmiş (Mari Sukiasyan) (ö.1999), Nüzhet Gökdoğan (ö.2003) verilebilir. Günümüz Matematikçilerinden Hilmi Hacısalihoğlu, Ali Osman Asar, Ali Nesin, Haydar Bulgak, Mustafa Balcı, Ali Sinan Sertöz... gibi  matematikçiler de çalışmalarıyla tarih şeridinde yer alabilir.
Fotoğraflı ve daha kapsamlı matematikçiler tarih şeridimizi incelemek ve matematik sınıflarında pano olarak kullanabilmek için tıklayınız.
| 0 yorum

John Paulos, Herkes için Matematik

Yetersiz matematik eğitimi, matematikle ilgili psikolojik engeller ve hayali algılar insanların çoğunu sayı cahili yapmaktadır. Eğer reklamcıların yanlış iddialarına, şarlatan doktorlara ve sahte bilimadamlarına direneceksek, içimizde istatistik konusunda sağlıklı bir kuşkuculuk geliştirmeliyiz. Bu canlı ve espirili kitabında John Allen Paulos matematiğin gücünü gösteren birçok ilginç örneği biraraya getiriyor. Birçok insan sayılarının matematikçilerin uğraşı alanına girdiği kanısındadır. Oysa günlük yaşamında matematiği kullanan her insan, bunun yararını görecektir.
Borsa stratejileri, eş seçimi, fal, diyet ve tıbbi iddialar, terörizm riski, astroloji, spor rekorları, seçimler, cins ayrımcılığı, UFO’lar, parapsikoloji, piyangolar ve ilaç testleri gibi güncel konulara matematik açıdan bakmak onları algılayışımızı değiştirecektir. Herkes İçin Matematik’i okumak matematik ve sayılardan hoşlanmayanlar için olduğu kadar matematik meraklıları için de ufuk açıcı olacaktır.

John Paulos, Herkes için Matematik, Çevirmen Başak Yüksel, Baskı 1999, Sayfa 218 Beyaz Yayınları

| | 0 yorum

Yeni Matematik Öğretim Programı Vizyonu

"Bu program; matematik eğitimi alanında yapılan millî ve milletler arası araştırmaları,gelişmiş ülkelerin matematik programlarını ve ülkemizdeki matematik eğitimi deneyimlerinitemel alarak hazırlanmıştır. Matematik öğretim programının vizyonu “Her öğrencimatematiği öğrenir.”olarak kurgulanmıştır. Özellikle ortaöğretim düzeyinde ele alınan birçokmatematiksel kavram, doğaları gereği soyut bir nitelik taşımaktadır. Bu sebeple zaman zamanöğrencilerin bu kavramları yapılandırmada güçlüklerle karşılaştıkları bilinmektedir. Bugüçlüğü ortadan kaldırmak için matematik öğretim programında ele alınan kavramlar, somutve sonlu hayat modellerinden yola çıkılarak ele alınmıştır. Böylece programdaki esas vurgu,işlem bilgilerinden, kavram bilgilerine kaymıştır.
Program bir yandan öğrencilerin matematiksel kavramları yapılandırmalarını sağlayacak uygun öğrenme ortamları tasarlanmasına vurgu yaparken bir yandan da temel matematiksel beceriler olan akıl yürütme, problem çözme, ilişkilendirme, iletişim ve modelleme gibi becerilerin geliştirilmesini hedef almaktadır. Bunun yanında program,öğrencilerin bağımsız düşünme, analitik düşünme, eleştirel düşünme, öz denetim gibi bireysel yetenek ve becerilerinin geliştirilmesini arzu etmektedir. Bunun içinde, program, öğrenciyi merkeze alan matematiksel kavramları ve temel becerileri keşfedici bir ortamdayapılandırabilecekleri zengin öğrenme ortamları tasarlanmasına özellikle önem vermektedir.

Matematik öğrenme süreci temel matematiksel kavramların kazanılmasından çok dahafazlasını içermektedir. Matematiksel düşünme, problem çözme, ilişkilendirme, matematiği bir iletişim dili olarak kullanabilme ve modelleme becerileri matematik öğrenme ve yapma süreçlerinin temel elemanlarıdır. Bu becerilerin, öğretmenin matematiğinin taklit edildiği, matematiksel kuralların sebeplerinin irdelenmeden ezberlendiği ortamlarda gelişmesi mümkün değildir. Bu bağlamda program matematik sınıflarını matematiğin sunulduğu değil matematiğin yapıldığı aktif öğrenme ortamlarına dönüştürülmesini hedeflemektedir.
Bu kapsamda program öğretmenlere açıklayandan çok yol göstericilik, öğrencilere ise dinleyenden daha çok sorgulayan rollü biçmektedir.Hızlı değişimlerin yaşandığı dünyamızda, tasarlanan öğretim programı ile öğrencilerimizin bugünü ve geleceği keşfetmede ihtiyaç duyacakları matematiksel bilgi,düşünme, beceri ve tutumlarını geliştirmeleri, karşılaştıkları günlük yaşam problemlerini matematiksel akıl yürütme yolları ile çözebilmeleri, matematiği günlük yaşam ve diğer disiplinlerle ilişkilendirebilmeleri hedeflenmiştir. Bunun yanında temel matematiksel becerileri gelişmiş, kendisi ve toplumu ile barışık, tarafsız düşünebilen üretken bireylerinyetiştirilmesi amaçlanmaktadır."

Kaynak: http://ttkb.meb.gov.tr/program.aspx?islem=1&kno=86

En güncel öğretim programları için Talim ve Terbiye Kurulu sitesini ziyaret ediniz. http://ttkb.meb.gov.tr/
| | | 0 yorum

John Forbes Nash

John Forbes Nash, 13 Haziran 1928’de Batı Virginia, Amerika’da dünyaya geldi. Oğluyla aynı adı taşıyan baba John Nash, Teksas A&M Üniversitesi mezunu bir elektrik mühendisi, annesi Margaret Virginia Martin ise bir Latince ve İngilizce öğretmeniydi, Batı Virginia Üniversitesi mezunuydu. 16 Kasım 1930’da kız kardeşi Martha doğdu. İlkokuldan önce anaokuluna kaydolan Nash, henüz çocukken Compton’s Picture Encyclopedia adlı resimli ansiklopediyi okuyor ve birçok şey öğreniyordu. Time Dergisi de ilgisini çekiyordu. Mutlu bir çocukluk geçirdi.

John Forbes Nash 12 yaşındayken evde kendi kendine deneyler yapmaya başladı. O zamanlarda da insanlarla çalışmayı değil, kendi kendine olmayı sevdiği belliydi. Kız kardeşi normal bir çocuktu ancak Nash diğer çocuklardan çok farklıydı, onların oyunları, şakaları Nash’e garip geliyordu, kısa sürede kendini herkesden soyutlamıştı. Annesi ve babası, Nash’in kitap merakını gördükleri için ona bir yetişkin gibi davranmaya, eğitimini teşvik etmeye başladılar. Nash’in matematik sevdasını ortaya çıkaran eser, lise yıllarında okuduğu, E.T. Bell’in “Men of Mathematics” adlı kitabı oldu. Lisede okuduğu sırada Bluefield College adlı üniversiteden dersler almaya başladı. Liseyi bitirdikten sonra Westinghouse bursuyla Carnegie Institute of Technology adlı üniversiteye kaydoldu, bölümü ise kimya mühendisliğiydi. Ancak Nash bu bölümden ayrılarak kimya bölümüne, daha sonra da matematiğe geçti. 1948 yılında hem lisans, hem de master derecesini aldı. Mezun olduktan sonra bir donanma projesi üzerinde çalışmaya başladı.

Nash bir süre sonra “Denkleştirme Kuramı” üzerine çalışmak amacıyla Princeton Üniversitesi’ne gitti. Hem Princeton’dan hem de Harvard Üniversitesi’nden teklif gelmişti ancak ailesinin yaşadığı yer olan Bluefield’a yakınlığı ve akademisyenlerinin Nash’e gösterdiği ilgi sayesinde, Princeton’a gitmeyi tercih etti. 1950 yılında doktorasını buradan aldı. Doktora tezi, daha sonra “Nash Dengesi” adını taşıyacak olan, “Oyun Teorisi”nin en önemli parçalarından olan bir çalışmaydı. Bu çalışması 3 makaleyi beraberinde getirdi; “Equilibrium Points in N-person Games” (1950), “The Bargaining Problem” (1950) ve “Two-person Cooperative Games” (1953). Ayrıca cebirsel geometri alanında önemli çalışmalar yaptı. 1951’de Massachusetts Institute of Technology’de (MIT) öğretmenlik yapmaya başladı. 1959’da bu görevinden istifa etti.1998 tarihli John Nash biyografisi “A Beautiful Mind”, Nash’in homoseksüel ilişkilerinden bahsediyordu. Üniversite yıllarından itibaren bunu saklamamıştı ve çevresi tarafından hor görülmemişti. Kitabın yazarı, Nash’in üniversitedeki erkek arkadaşlarıyla toplantı odasında öpüştüklerini ve bu tip davranışlardan çekinmediğini anlatıyordu. Ancak üniversite sonrası devlet işlerinde çalışırken bu durumu kabul görmemişti, hatta “uygunsuz davranış” nedeniyle tutuklanmış ve işinden kovulmuştu. Eşi Alicia’yla yapılan bir röportajda Alicia, Nash’in homoseksüel ya da biseksüel olmadığını söylemişti ancak Nash bunu hiçbir zaman açık bir şekilde reddetmedi.

Nash, 1958 yılında şizorfeni belirtileri göstermeye başladı. Ancak Princeton’da geçirdiği 4 yıl boyunca (1945 – 1949) kayıtlarda yalnız yaşadığı görünse de, bir oda arkadaşının olduğunu düşünüyordu. 1959 yılında yatırıldığı hastanede kendine güvensizlik, depresyon ve paranoyak şizofreni tanıları kondu. Paris ve Cenevre’de bir süre yaşadıktan sonra 1960’ta Princeton’a geri döndü, 1970’e kadar birçok kez hastaneye yattı. Bu yıllarda ilaç tedavisini kesmeye karar verdi. Biyografisinin yazarı Sylvia Nasar’a göre yavaş yavaş iyileşmeye başladı, bu süreçte eşi de ona büyük destek verdi. Nash, çalışmalarının karşılığını almaya 1978 yılında başladı. Bu yıl “John Von Neumann Teori Ödülü”nü, 1994’te ekonomi dalında Nobel Ödülü’nü, 1999’da “Leroy P. Steele Ödülü”nü aldı.2001 yapımı “A Beautiful Mind” (Akıl Oyunları) adlı film, John Nash’in hayatından esinlenilerek yapıldı ve film 4 Akademi Ödülü kazandı. Senaryo, aynı adlı biyografi üzerine yazılmıştı. Ancak bu biyografi ve Nash’in gerçek hayatı arasında örtüşmezlikler vardı.

Massachusetts Institute of Technology’de, El Salvador’lu bir fizik öğrencisi olan Alicia Lopez-Harrison de Lardé ile tanıştı. İkili Şubat 1957’de evlendi. 1959 yılında eşi Nash’i şizofreni tedavisi için akıl hastanesine yatırdı. Bu olaydan hemen sonra oğulları John Charles Martin dünyaya geldi ancak 1 yıl kadar ismi konulmadı çünkü Alicia, eşinin de bu konuda bir fikir vermesini istemişti. John Martin de babası gibi bir matematikçi oldu ve sonraları ona da şizofreni teşhisi kondu. Nash, Eleanor Stier’den 19 Haziran 1953 doğumlu bir çocuğa daha sahipti ancak ne annesiyle ne de çocuğuyla yakın ilgisi oldu. Alicia Lopez- John Nash çifti 1963’te boşandı ve 1970’te tekrar biraraya geldi. Bu tarihten itibaren darılıp barışan çift, kendileri hakkında “aynı çatı altındaki iki yabancı” benzetmesini yapmıştı. Nash 1994’te Nobel Ödülü’nü kazandıktan sonra aralarını düzelttiler ve 1 Haziran 2001’de tekrar evlendiler.Nash, 1945 ve 1996 yılları arasında 23 bilimsel çalışma yayınladı, ayrıca “Essays on Game Theory” (1996) ve “The Essential John Nash” isimli kitapları yazdı. Aynı zamanda “Hex” ve “So Long Sucker” adlı 2 popüler oyunu da üretti.
| | 0 yorum

Benoit Mandelbrot'un Hayatı

Benoit B.  Mandelbrot  (1924 20 Kasım - 14 Ekim 2010) Polonya doğumlu bir Fransız matematikçidir. Özellikle matematiği bir "sanat olarak etiketlemiş olan fraktal geometrisi alanı ile bilinir. Fraktal geometri alanına katkısı ve doğada "pürüzlülük ve öz-benzerlik " alanlarında çeşitli çalışmaları vardır. Mandelbrot, İkinci Polonya Cumhuriyeti sırasında Varşova'da 1924 yılında Yahudi bir ailede doğdu. Annesi doktor, babası giysi ticareti ile meşguldü. Amcasının yardımlarıyla ilk eğitimini tamamladı. 1936'da çocukken Mandelbrot'un ailesi Polonya'nın Varşova kentinden Fransa'ya göç etti . Eğitimi için, Bribi-la-Gaillarde Hahamı Haham David Feuerwerker tarafından çalışmalarına devam etmesi için ona yardım edildi. II. Dünya Savaşı sona erdikten sonra , Mandelbrot matematik eğitimi aldı.
1944'te Mandelbrot Paris'e döndü , Lyon'daki Lycée du Parc'da eğitim gördü ve 1945'ten 1947'ye kadar Gaston Julia ve Paul Lévy altında çalıştığı École Polytechnique'e katıldı. 1947'den 1949'a kadar California Teknoloji Enstitüsü'nde eğitim gördü ve burada havacılık alanında yüksek lisans yaptı. Paris Üniversitesi'nde 1952 yılında, Matematik Bilimleri alanında doktora derecesini elde etti. Kariyerinin çoğunu ABD ve Fransa'da çifte vatandaşlıkla geçirdi. 1949'dan 1958'e kadar Mandelbrot, Centre National de la Recherche Scientifique'de çalıştı. 1955 yılında Aliette Kagan ile evlendi. Uluslararası Genetik Epistemoloji Merkezi'nde Jean Piaget ile işbirliği yapmak için Cenevre'ye taşındı. Daha onra Université Lille Nord de France çalışmaya başladı. 1958'de büyük bilgisayar şirketi olan IBM'de 35 yıllık kariyerine başladı ve burada IBM üyesi oldu ve aynı zamanda periyodik olarak Harvard Üniversitesi'nde ders verdi.


1951'den itibaren Mandelbrot problemler üzerinde çalıştı ve sadece matematikte değil, bilgi teorisi , ekonomi ve akışkanlar dinamiği gibi uygulamalı alanlarda yayınladı . Harvard'da, ABD emtia piyasalarını pamuk vadeli işlemleriyle ilgili çalışmasının yayınlanmasının ardından ekonomi ve uygulamalı bilimler alanındaki dersleri yönetti. IBM'in veri ve bilgisayarlarına erişimi nedeniyle Mandelbrot, 1980'de Mandelbrot Setini keşfetmesine yol açan fraktal geometri alanında çalışmaları yaptı ve fraktal görüntüleri oluşturmak ve görüntülemek için bilgisayar yazılım ve grafiklerini kullandı. Görsel karmaşıklığın basit kurallardan nasıl oluşturulabileceğini gösterdi. Tipik olarak "kaba" olarak kabul edilen şeylerin, bulutlar veya kıyı şeritleri gibi bir "karışıklık" veya "kaotik" olduğunu, aslında bir "düzen içinde" olduğunu çalışmalarıyla gösterdi. Matematik ve geometri merkezli araştırma kariyeri; istatistiksel fizik, meteoroloji, hidroloji, jeomorfoloji, anatomi, taksonomi, nöroloji, dilbilim, bilişim teknolojisi, bilgisayar grafikleri, ekonomi, jeoloji, tıp, fiziksel kozmoloji, mühendislik, kaos teorisi, ekonofizik, metalurji ve sosyal bilimler gibi çok farklı yeni alanlarda da sürdü.

Fraktal Geometrinin Tarihçesi

Her şey, Benoit Mandelbrot’un kafasında oluşan ve aslında basit gibi görünen bir soru ile başladı: İngiltere’nin kıyı uzunluğu ne kadardır? Yanıtı bulmak için yapılabilecek ilk şey, ölçeği belli bir harita bulduktan sonra, buradan kıyı şeridinin uzunluğunu, sözgelimi bir iple ölçmek ve sonucu haritanın ölçeğiyle çarparak, kıyı uzunluğunu hesaplamak olabilir. Peki, kıyı şeridinin uzunluğu ‘gerçekte’ ne kadardır? Kıyı şeridinin uçaktan çekilmiş bir dizi fotoğrafı ile daha doğru bir ölçüm yapabilirsiniz; şüphesiz bu değer, harita üzerinde hesaplanandan biraz daha büyük çıkacaktır. Biraz daha ileri gidip, tüm kıyıyı adım adım ölçtüğünüzü düşünelim; bu durumda ne kadarlık bir uzunluk hesaplayabilirsiniz? Peki ya tüm uzunluğu milimetrik bir cetvelle ölçebildiğinizi düşünün; hatta moleküler boyulara kadar uzanan hassas bir uzunluk ölçümü yapabildiğinizi… Sonuçta, ölçümlerinizi hassaslaştırdıkça, kıyı uzunluğunun sonsuza gittiğini farkedeceksiniz. Sonlu bir kara parçasının sınırları, aslında sonsuz uzunluktadır! Bu basit ve çarpıcı sonuç, Benoit Mandelbrot gibi bir matematikçinin elinde, ‘fraktal geometri’ dediğimiz yeni bir matematik dalının temellerinin atılmasını sağladı.
 
Mandelbrot, tabiattaki biçimlerin matematiğini keşfeden ve buna latince ‘kırıklı’ anlamına gelen ‘fractus’ sözünden türettiği ‘fractal’ adını veren kişidir. Kendisinin tanımladığı (yahut kendi ifadesiyle, keşfettiği) ünlü ‘Mandelbrot Kümesi’, belki de dünyanın en meşhur geometrik şekillerinden birisidir. Mandelbrot aslında fraktal dünyanın ilk kaşifi değildir. Ondan neredeyse bir yüzyıl kadar önce matematikçi Gaston Julia, 1. DÜnya Savaşında yaralanmasının ardından hastanede geçirdiği uzun ve acılı günlerde, bu gün Julia kümesi olarak bildiğimiz ilk fraktal geometrik kumeyi tanımlamıştır.Elbette Julia, defalarca tekrarlayan işlemleri hızlıca gerçekleştirebilen bigisayarların icadından yıllar önce, kuramsal olarak keşfettiği bu geometrik biçimi tam olarak görme şansına sahip değildi. Defterlerinin arkasına yaptığı bir kaç çizimle fraktal geomtrinin ilk esaslarını ortaya koymuş, fakat bu yeni geometrinin harika dünyasına tam olarak tanıklık edemeden bu dünyadan ayrılmıştı. Yıllar sonra Mandelbrot’un, Julia kümesinin de türetilebildiği ana fraktal biçim olan o meşhur Mandelbrot Kümesi’ni keşfi de zaten bilgisayarların bu gün bildiğimiz şekliyle kullanıma girmesi sonucu mümkün oldu. Çünkü fraktal geometri milyonlarca kez tekrarlanan işlemlerle elde edilebilen çok karmaşık geometrik biçimlerden oluşur ve bunları elle yapmanın imkansızlığı ancak bilgisayarlar hayatımıza girdikten sonra anlaşılabilmiştir. 

Yaşamdan Fraktal Geometri Örnekleri

Fraktal Geometri, bir özel geometri dalı olarak ilk ortaya çıktığı yıllardan beri araştırıcıların hızla ilgisini çeken bir bilim alanı olmaya devam ediyor. Bu ilginin en önemli nedeni, fraktallarla doğal biçimler arasındaki benzerliğin sadece görsel bir benzeşimin çok ötesinde olmasıdır aslında. Doğadaki bir çok biçimin bazı basit fraktal kurallarla kısmen yahut tamamen ifade edilebiliyor olması, bu basit kurallarla doğal biçimlere benzer yapıların bilgisayarlarca oluşturulabilmeleri, araştırıcıları bu alanın derinliklerine doğru kafa yormaya sevkediyor. Doğadaki biçimlerin oluşumlarını inceleyen morfogenez biliminin şu anda en önemli ayaklarından birisini, fraktal geometri ile doğadaki biçimler arasındaki benzerlikleri araştırarak, özellikle canlılardaki karmaşık biçim oluşumlarının şifresini çözebilme çabası oluşturmaktadır.


Fraktal geometri ayrıca fraktal analiz olarak adlandırılan yeni bir ölçüm yöntemleri dizisinin de bilim gündemine girmesini sağladı. Sadece biçimlerin değil, süreçlerin de karmaşıklıklarını ölçmek için kullanılan fraktal analiz ve dekompozisyon teknikleri, doğada karşımıza çıkan biçimlerin ve olayların karmaşıklık düzeylerini sayısal halde izleyip inceleyebilmek için bize yeni yöntemler sunmakta. Örneğin, mikroskop altında incelediğimiz, hücreler gibi doku bileşenlerinin çeşitli nedenlerle uğradıkları biçimsel değişiklikleri artık bir de “fraktal boyutlarını” hesaplayarak sayısallaştırabiliyoruz. Veya beyin aktivitesi sırasında kaydedilen elektroensefalogram (EEG) sinyallerinin benzer yöntemlerle analiz edilmesi, bize kaydedilen aktivitelerin karmaşıklık düzeyi ve altında yatan nedenler konusunda yepyeni fikirler sunuyor. Kısacası, fraktal geometri bu gün, her alanda kullanılan ve gelecekte gittikçe de gözde hale gelecek bir alan olma özelliğini koruyor.
Fraktal geometri, bildiğimiz Euklid (Öklid) geometrisinden oldukça farklıdır. Euklid geometrisi, okullarda okuduğumuz, üniversite sınavlarında karşımıza çıkan sıfır, bir iki ve üç boyutlu geometrik şekillerle ilgilenir. Bu şekillerin genellikle gerek dünyada tam olarak bir kaşılıkları yoktur ve çoğunlukla idealleştirmelerden ibarettirler (gerçek dünyada kalınıksız bir kağıt, yahut boyutsuz bir nokta görme olasılığımız yoktur).








İslam Kütüphanesi Seçmeler

Matematik Seçme Konuları

Aşağıdaki Yazılar İlginizi Çekebilir!!!