Yaşamdan Fraktal Geometri Örnekleri

Etiketler :
Fraktal Geometri, bir özel geometri dalı olarak ilk ortaya çıktığı yıllardan beri araştırıcıların hızla ilgisini çeken bir bilim alanı olmaya devam ediyor. Bu ilginin en önemli nedeni, fraktallarla doğal biçimler arasındaki benzerliğin sadece görsel bir benzeşimin çok ötesinde olmasıdır aslında. Doğadaki bir çok biçimin bazı basit fraktal kurallarla kısmen yahut tamamen ifade edilebiliyor olması, bu basit kurallarla doğal biçimlere benzer yapıların bilgisayarlarca oluşturulabilmeleri, araştırıcıları bu alanın derinliklerine doğru kafa yormaya sevkediyor. Doğadaki biçimlerin oluşumlarını inceleyen morfogenez biliminin şu anda en önemli ayaklarından birisini, fraktal geometri ile doğadaki biçimler arasındaki benzerlikleri araştırarak, özellikle canlılardaki karmaşık biçim oluşumlarının şifresini çözebilme çabası oluşturmaktadır.


Fraktal geometri ayrıca fraktal analiz olarak adlandırılan yeni bir ölçüm yöntemleri dizisinin de bilim gündemine girmesini sağladı. Sadece biçimlerin değil, süreçlerin de karmaşıklıklarını ölçmek için kullanılan fraktal analiz ve dekompozisyon teknikleri, doğada karşımıza çıkan biçimlerin ve olayların karmaşıklık düzeylerini sayısal halde izleyip inceleyebilmek için bize yeni yöntemler sunmakta. Örneğin, mikroskop altında incelediğimiz, hücreler gibi doku bileşenlerinin çeşitli nedenlerle uğradıkları biçimsel değişiklikleri artık bir de “fraktal boyutlarını” hesaplayarak sayısallaştırabiliyoruz. Veya beyin aktivitesi sırasında kaydedilen elektroensefalogram (EEG) sinyallerinin benzer yöntemlerle analiz edilmesi, bize kaydedilen aktivitelerin karmaşıklık düzeyi ve altında yatan nedenler konusunda yepyeni fikirler sunuyor. Kısacası, fraktal geometri bu gün, her alanda kullanılan ve gelecekte gittikçe de gözde hale gelecek bir alan olma özelliğini koruyor.
Fraktal geometri, bildiğimiz Euklid (Öklid) geometrisinden oldukça farklıdır. Euklid geometrisi, okullarda okuduğumuz, üniversite sınavlarında karşımıza çıkan sıfır, bir iki ve üç boyutlu geometrik şekillerle ilgilenir. Bu şekillerin genellikle gerek dünyada tam olarak bir kaşılıkları yoktur ve çoğunlukla idealleştirmelerden ibarettirler (gerçek dünyada kalınıksız bir kağıt, yahut boyutsuz bir nokta görme olasılığımız yoktur).








0 yorum:

Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."

İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...

Aşağıdaki Yazılar İlginizi Çekebilir!!!

  • Homojen Trigonometrik Denklemler14.12.2021 - 0 Yorumsin ve cos fonksiyonlarına bağlı olarak verilen birinci veya ikinci dereceden tek değişkenli a ve b reel katsayılar olmak üzere aynı dereceden a.sinx+bcosx=0 şeklindeki denklemlere homojen denklem denir. Bu denklemlerin çözüm kümeleri bulunurken…
  • Augustin Louis Cauchy03.02.2010 - 0 Yorumİlk büyük Fransız matematikçisi olan Cauchy, 1789’da Paris’te doğdu. 1814 yılında, karmaşık fonksiyonlar kuramını geliştirdi. Bugün, Cauchy teoremi adıyla bilinen ünlü teoremi ifade ederek ispatladı. Bu alanda integraller ve bunların hesaplama…
  • Trigonometri ÖSYS Soruları22.04.2016 - 0 YorumTrigonometri ile ilgili ÖSYM tarafından geçmiş yıllarda üniversite seçme/giriş sınavlarındaki sorulardan yayınlanmış olan soruları incelemek için tıklayın...
  • Matematik Okuma Kitaplığı18.08.2013 - 0 Yorum Matematik Merakı oluşturman ve öğrencilerin matematiğe olan ilgi seviyelerinin artmasına vesile olmak amacıyla yazılan çeşitli matematik kitaplarından oluşan kütüphanemiz öğretmenlerimize yardımcı olacaktır. Listede bulunmayan kitapları…
  • Orucun Mahiyeti ve Çeşitleri10.03.2010 - 0 Yorum 1- Oruç, ikinci fecirden başlayarak güneşin batışına kadar yemekten, içmekten ve cinsel ilişkiden nefsi kesmek, demektir. Oruç kelimesinin Arabçası, siyam ve savm'dır ki, nefsi tutmak ve engellemek manasındadır. "Siyam" sözü, Savm'ın çoğulu…
  • Bileşke Fonksiyonun Türevi ve İspatı26.11.2016 - 0 Yorum Bileşke fonksiyonların türevi bulunurken eğer fonksiyonun bileşkesi bulunabiliyorsa öncelikle fonksiyonun bileşkesi alınır daha sonra istenen türev bulunur. Bileşke fonksiyonun bulanmayacağı veya daha zor olarak hesaplanacağı durumlarda ise…
  • Bursalı Kadızade Rumi08.03.2012 - 0 Yorum Bursalı Kadızâde Rumi, soyca ilim sahibi bir aileden gelmiş olup, çağının bilim otoritelerinden Bursa kadısı Mehmet Çelebi’nin oğludur. Bursa ve çevresinde daha çok "Kadızade" olarak tanındı. Matematik, astronomi ve Hanefî mezhebî fıkıh âlimi.…
  • Ebu Hanife Ahmed bin Davud Dinaveri15.02.2012 - 0 Yorum Dinaveri veya Ebu Hanife Ahmed bin Davud Dinaveri (d. 815 Kirmanşah - ö. 24 Temmuz 896 Dinaver) Astronomi, botanik, metalürji, coğrafya, matematik ve tarih gibi çok çeşitli alanlarda çalışmalarda bulunmuş Müslüman bilim insanıdır. Dinaveri bugün…