Net Fikir » matematikçiler » Benoit Mandelbrot'un Hayatı
Benoit Mandelbrot'un Hayatı
Etiketler :
fraktal
fraktal geometri
geometri
matematik
matematikçiler
Benoit B. Mandelbrot (1924 20 Kasım - 14 Ekim 2010) Polonya doğumlu bir Fransız matematikçidir. Özellikle matematiği bir "sanat olarak etiketlemiş olan fraktal geometrisi alanı ile bilinir. Fraktal geometri alanına katkısı ve doğada "pürüzlülük ve öz-benzerlik " alanlarında çeşitli çalışmaları vardır. Mandelbrot, İkinci Polonya Cumhuriyeti sırasında Varşova'da 1924 yılında Yahudi bir ailede doğdu. Annesi doktor, babası giysi ticareti ile meşguldü. Amcasının yardımlarıyla ilk eğitimini tamamladı. 1936'da çocukken Mandelbrot'un ailesi Polonya'nın Varşova kentinden Fransa'ya göç etti . Eğitimi için, Bribi-la-Gaillarde Hahamı Haham David Feuerwerker tarafından çalışmalarına devam etmesi için ona yardım edildi. II. Dünya Savaşı sona erdikten sonra , Mandelbrot matematik eğitimi aldı.
1944'te Mandelbrot Paris'e döndü , Lyon'daki Lycée du Parc'da eğitim gördü ve 1945'ten 1947'ye kadar Gaston Julia ve Paul Lévy altında çalıştığı École Polytechnique'e katıldı. 1947'den 1949'a kadar California Teknoloji Enstitüsü'nde eğitim gördü ve burada havacılık alanında yüksek lisans yaptı. Paris Üniversitesi'nde 1952 yılında, Matematik Bilimleri alanında doktora derecesini elde etti. Kariyerinin çoğunu ABD ve Fransa'da çifte vatandaşlıkla geçirdi. 1949'dan 1958'e kadar Mandelbrot, Centre National de la Recherche Scientifique'de çalıştı. 1955 yılında Aliette Kagan ile evlendi. Uluslararası Genetik Epistemoloji Merkezi'nde Jean Piaget ile işbirliği yapmak için Cenevre'ye taşındı. Daha onra Université Lille Nord de France çalışmaya başladı. 1958'de büyük bilgisayar şirketi olan IBM'de 35 yıllık kariyerine başladı ve burada IBM üyesi oldu ve aynı zamanda periyodik olarak Harvard Üniversitesi'nde ders verdi.
1951'den itibaren Mandelbrot problemler üzerinde çalıştı ve sadece matematikte değil, bilgi teorisi , ekonomi ve akışkanlar dinamiği gibi uygulamalı alanlarda yayınladı .
Harvard'da, ABD emtia piyasalarını pamuk vadeli işlemleriyle ilgili çalışmasının yayınlanmasının ardından ekonomi ve uygulamalı bilimler alanındaki dersleri yönetti. IBM'in veri ve bilgisayarlarına erişimi nedeniyle Mandelbrot, 1980'de Mandelbrot Setini keşfetmesine yol açan fraktal geometri alanında çalışmaları yaptı ve fraktal görüntüleri oluşturmak ve görüntülemek için bilgisayar yazılım ve grafiklerini kullandı. Görsel karmaşıklığın basit kurallardan nasıl oluşturulabileceğini gösterdi. Tipik olarak "kaba" olarak kabul edilen şeylerin, bulutlar veya kıyı şeritleri gibi bir "karışıklık" veya "kaotik" olduğunu, aslında bir "düzen içinde" olduğunu çalışmalarıyla gösterdi. Matematik ve geometri merkezli araştırma kariyeri; istatistiksel fizik, meteoroloji, hidroloji, jeomorfoloji, anatomi, taksonomi, nöroloji, dilbilim, bilişim teknolojisi, bilgisayar grafikleri, ekonomi, jeoloji, tıp, fiziksel kozmoloji, mühendislik, kaos teorisi, ekonofizik, metalurji ve sosyal bilimler gibi çok farklı yeni alanlarda da sürdü.
Mandelbrot, finansal piyasaları , yoğunlaşma ve uzun menzilli bağımlılıkla karakterize edilen "vahşi rastgelelik" (wild randomness) örneğini çalışmalarında gösterdi. Finansal dalgalanmaları modellemek için birkaç özgün yaklaşım geliştirdi. İlk çalışmalarında, finansal piyasalardaki fiyat değişikliklerinin bir Gauss dağılımını takip etmediğini , bunun yerine sonsuz varyansa sahip Lévy istikrarlı dağılımlarına sahip olduğunu buldu. Örneğin, pamuk fiyatlarının α parametresi ile bir Lévy istikrarlı dağılımını takip ettiğini buldu. Gauss dağılımında olduğu gibi 2 yerine 1.7'ye eşittir. "Kararlı" dağılımlar, rastgele bir değişkenin birçok örneğinin toplamının aynı dağıtımı takip ettiği, ancak daha büyük bir ölçek parametresi ile özelliğe sahip olduğunu ifade etti.
Mandelbrot, matematiksel fikirlerini kozmolojide işe koydu. 1974 yılında Olbers paradoksunun ("karanlık gece gökyüzü") yeni bir açıklamasını sunarak fraktal teorinin sonuçlarını paradoksun yeterli, ama gerekli olmayan bir çözümü olarak göstererek fraktalların kullanım alanlarına örnekler sundu. Harvard Üniversitesi'nde misafir profesör olarak görev yapan Mandelbrot, Fransız matematikçi Gaston Julia (ö. 1978) tarafından yazılan Journal de Mathématiques Pures et Appliquees isimli 199 sayfalık bir makale dikkatini çekti ve bu alanda "Julia setleri" denilen "karmaşık düzlemin belirli dönüşümleri altında değişmeyen fraktalları" incelemeye başladı.
Gaston Julia ve Pierre Fatou'nun daha önceki çalışmalarına dayanan Mandelbrot, Julia setlerinin görüntülerini çizmek için bilgisayar kullandı. 1975'te Mandelbrot , bu yapıları tanımlamak için fraktal terimini icat etti ve öncü fikirlerini yayınladı. Mandelbrot, kırık veya paramparça cam olarak tanımlanan Latince "fractus" kelimesinden türetildiği şekliyle "fraktal" terimini bu çalışmalarında kullanmıştır. Julia setlerinin topolojisini araştırırken, 1979'da kendi ismiyle tanıttığı Mandelbrot setini akademik dünyaya kazandırdı. Bu etkili çalışma, fraktalları profesyonel ve popüler matematiğin ana akımı haline getirdi. Bilim yazarı Arthur C. Clarke, bu başarılı çalışmayı şu sözleriyle ifade etmiştir. "Mandelbrot seti gerçekten de tüm matematik tarihinin en şaşırtıcı keşiflerinden biridir. Böyle inanılmaz derecede basit bir denklemin tam anlamıyla sonsuz karmaşıklık görüntüleri üretebileceğini kim hayal edebilirdi?"
Yeni geliştirilen IBM bilgisayarlarını kullanarak, Mandelbrot grafik bilgisayar kodu ve yazılımları sayesinde; "doğayı ve insan vücudunu anımsatan formları olan psychedelic sanatının çılgınca coşkusu" olarak nitelendirdiği görüntüleri kullanarak, fraktal görüntüler oluşturmayı başardı. 1982'de Mandelbrot, Fraktal Doğa Geometrisi'ndeki fikirlerini genişletti ve güncelledi. Daha sonra Fraktaller: Form, Şans ve Boyut' isimli kitabı yayınladı. Mandelbrot 2006'da Légion d'honneur için kabul konuşması sırasında Mandelbrot setinden bahsetti.
Bilgisayar bilimcisi ve fizikçi Stephen Wolfram'a göre, kitap Mandelbrot için "ciddi matematiğin ışığını zorlukla eşdeğer gören alanlara oldukça basit bir matematik uygulaması" betimlemesi yapıldı. Wolfram, bu yeni araştırmanın sonucunda artık "gezici bir bilim adamı" olmadığını ve daha sonra ona "fraktalların babası" adını verdi.
Kariyerinin sonuna doğru Yale Üniversitesi'nde Matematiksel Bilimleri Sterling Profesörü olarak görev yaptı. Yale tarihinin en yaşlı profesörlüğünü yapanlardan biri oldu. Mandelbrot ayrıca Kuzeybatı Pasifik Ulusal Laboratuarı , Lille Nord de France Üniversitesi , İleri Araştırmalar Enstitüsü ve Centre Ulusal de la Recherche Scientifique'te görev almıştır . Kariyeri boyunca 15'in üzerinde fahri doktora aldı ve birçok bilim dergisinin yanı sıra sayısız ödül kazandı. Otobiyografisi Fraktalist: Bilimsel Maverick'in Anıları ölümünden sonra 2012'de yayınlandı.
Mandelbrot, 85 yaşında Fransa'da bir bakımevinde pankreas kanseri sebebiyle öldü. Mandelbrot'un ölümü sonrasında Fransa Cumhurbaşkanı Nicolas Sarkozy , Mandelbrot'un "önceden düşünülmüş kavramları yenilikten ve paramparça etmekten asla kaçınmayan güçlü, özgün bir zihne sahip olduğunu söyledi.
2010 yılında TED İdeas konferanslarında Mandelbrot Setleri ve Fraktallar hakkında bir konuşma yapmıştır.
TED Konuşma Metni (Şubat-2010, Translated by Faruk C.SENDAN, Reviewed by Yasin Alp Aluç)
00:00 Çok teşekkür ederim. Oturduğum için lütfen beni affedin; ben çok yaşlıyım. Aslında, sizinle konuşacağım başlık belli bir açıdan oldukça özgün çünkü çok eski. Pürüz ezelden, ezelden beri insan hayatının bir parçası. Ve antik dönem yazarları bunun hakkında yazmışlar. Oldukça kontrol edilemez gibiydi. Ve belli bir açıdan, arşırı derecede karmaşık görünüyordu, Kargaşa içinde kargaşa içinde başka bir kargaşa. Birçok çeşit kargaşa vardır. Aslında, şimdi, tamamen şans eseri, bu çeşit bir karmaşıklığın incelendiği bir çalışmaya yıllar önce dahil oldum. Ve tam bir şaşkınlıkla, izler buldum -- çok güçlü izler olduğunu söylemeliyim -- o pürüzdeki düzenle ilgili. Ve aslında bugün, size bunun ne anlama geldiğini gösteren birkaç örneği sunmak istiyorum. Pürüz sözcüğünü düzensizliğe tercih ediyorum çünkü düzensizlik -- uzun zamanlar önceki geçliğimde Latince öğrenmiş olan bana göre düzenin tam tersi anlamına gelir. Ama aslında öyle değil. Düzen, pürüzün zıttıdır çünkü dünyanın temel görünümü çok pürüzlüdür.
01:26
Şimdi size birkaç nesne göstermeme izin verin. Bunlardan bazıları yapay. Diğerleri, belli açılardan, çok gerçek. Şimdi, bu gerçek olan. Bu karnıbahar. Şimdi neden size çok bayağı ve antik bir sebze olan karnıbaharı gösteriyorum? Çünkü eski ve antik belki de sebze, hem çok karmaşık ve hem de çok basit ikisi de aynı anda. Tartmaya kalkarsanız, tartması çok kolay tabi ki. Ve yediğiniz zaman kilosu önemlidir. Ama yüzeyini ölçmeye kalktığınızı düşünün. Aslında, çok ilginç. Keskin bir bıçakla karnıbaharın çiçeklerinden birini keserseniz, ve kestiğiniz parçalara ayrı ayrı bakarsanız, bütün bir karnıbaharı, ama ufak boyutta olduğunu düşünürsünüz. Ve yine kestiğinizde, yine, yine, yine, yine, yine, yine, yine, yine. Ve yine ufak karnıbaharlarınız olur. Aslında insanoğlunun deneyimi her zaman her parçası bütününe benzeyen ama sadece daha ufağı olan bu özgün özelliğe sahip bazı şekiller olmuştur. Peki, insanlık bununla ilgili ne yaptı? Çok, çok az.
02:42
Peki ben aslında bu sorunla ilgili çalışırken ne yaptım ve oldukça şaşırtıcı şeyler buldum. Birinin pürüzü bir sayıyla bir sayıyla ölçebileceğini buldum. 2.3, 1.2 ve bazen çok daha fazla. Bir gün, bir arkadaşım, bana takılmak için, bir resim getirdi ve dedi ki; "Bu eğrinin pürüz değeri kaçtır?" Ben de ona "Aslında, 1.5'den çok az ufak." dedim. Ve 1.48'di. Şimdi, hiç zaman almadı. Bu tarz şeylere o kadar uzun zamandır bakıyorum ki. Aslında bu sayılar, yüzeylerdeki pürüzü ifade eden sayılardır. Hemen söylemeliyim ki bu yüzeyler tamamen yapay. Bir bilgisayarda yapıldılar. Ve girdi olarak sadece bir sayı var. Ve o sayı da pürüz değeri. Ve aslında soldakinde, birçok yeryüzünün pürüz değerini aldım. Sağdakine, daha yüksek bir pürüz değeri aldım. Bu nedenle göz, bir süre sonra, bu ikisini çok iyi ayırt edebiliyor.
03:46
İnsanlık pürüzü ölçmeyi öğrenmesi gerekiyordu. Bu çok pürüzlü ve bu da pürüzsüz denebilir ve mükemmel pürüzsüz bir yüzey. Çok az şey çok düzgündür. Ve şimdi eğer siz karnıbaharın yüzeyi ne kadardır diye bir soru soracak olursanız... Aslında, ölçer ve ölçer ve ölçersiniz. Çok ufak boyutlara doğru inerek yaklaştığınız her seferinde ölçümleriniz daha da büyük olacak. Buradaki göllerin sahil uzunluğu nedir? Daha yakından ölçtükçe, daha uzun olur. Sahil şeridi uzunluğu kavramı, çok doğal görünmesine ve birçok durumda kullanılmasına rağmen, aslında, tamamen uydurmadır; böyle birşey yoktur. Bunu farklı yapmalısınız.
04:27
Bunları bilmenin ne faydası var? Aslında, yeteri derecede şaşırtıcı ki birçok şekilde iyi tarafı var. Başlamak gerekirse, bir çeşit benim keşfim olan yapay yeryüzü şekilleri sinemalarda her zaman kullanılıyor. Uzakta dağlar görüyoruz. Dağlar olabilir, ama benim canlandırdığım denklemler de olabilir. Şimdi yapması çok kolay. Zamanında çok vakit harcayan bir şeydi, ama şimdi hiçbir şey. Şimdi şuna bir bakın. Bu gerçek bir akciğer. Aslında akciğerler çok garip şeylerdir. Şunu ele alırsanız, bilirsiniz aslında ağırlıkları çok azdır. Bir akciğerin kapladığı hacim de çok ufaktır. Peki ya akciğerin yüzeyi? Anatomi uzmanları bununla ilgili oldukça çok tartışıyorlar. Bazıları normal bir erkek bireyin akciğeri bir basket sahasının yüzeyi kadar olduğunu söylüyor. Ve diğerleri de, hayır, beş basketbol sahası diyor. Muazzam anlaşmazlıklar. Neden böyle peki? Çünkü, aslında akciğerin yüzölçümü çok eğreti tanımlanmış bir şey. Bronşlar dallanır, dallanır, dallanır. Ve dallanmaları durur bir nedenden ötürü değil de fiziksel kısıtlar nedeniyle, ciğerde bulunan mukus nedeniyle. Aslında olan şey şudur ki çok büyük bir akciğeriniz var, ama eğer dallanır ve dallanırsa, bir balinanın, bir insanın ve ufak bir kemirgen için aynı mesafelere kadar iner.
05:54
Peki, bunun ne gibi bir faydası var? Aslında, yeteri kadar şaşırtıcı, yeteri kadar inanılmaz olan anatomi uzmanları çok yakın zamana kadar akciğerin yapısına ilişkin çok cılız fikirleri vardı. Ve sanırım benim matematiğimin, oldukça şaşırtıcı bir şekilde, akciğer hastalıkları ve de böbrek hastalıklarıyla, herhangi bir geometrisi olmayan bütün bu dallanma sistemleriyle, ilgili araştırma yapan cerrahlara büyük bir yardımı dokundu. Aslında, kendimi, başka bir ifadeyle, geometrisi olmayan şeylerin geometrisini inşa ederken buldum. Ve bunun da şaşırtıcı tarafı da genellikle, bu geometrinin kurallarının çok kısa olmasıdır. Bu kadar uzunlukta bir denkleminiz var. Denklemi birçok kez tekrar ediyorsunuz. Bazen tekrar ederek, yine, yine, yine. Aynı tekrar. Ve sonunda böyle şeylerle karşılaşıyorsunuz.
06:46
Bu bulut tamamen, yüzde 100 yapay. Aslında, 99.9. Ve doğal olan tek tarafı, bir sayı, doğadan alınan, bulutun pürüz katsayısı. Çok dengesiz, çok değişken, çok karmaşık birşey olan bulutun arkasında basit bir kural olmalı. Aslında bu basit kural bulutların açıklaması değildir. Bulut kahinleri bunun iyi yönlerden faydalanmalıydı. Bu resimlerin ne kadar ileri düzeyde olduğunu bilmiyorum, çok eskiler. Ben bununla çok ilgilenmiştim, ama sonra dikkatimi başka bir olaya çevirdim.
07:26
Aslında, oldukça ilgi çekici başka bir şey daha. Birçok insan tarafından takdir edilmemiş, matematik tarihindeki sarsıcı olaylardan bir tanesi yaklaşık olarak 130 yıl önce meydana geldi, 145 yıl önce. Matematikçiler var olmayan şekilleri yaratmaya başladılar. Matematikçiler, bir şekilde doğanın bilmediği şeyleri keşfedebilecek durumda olduklarından kendilerini övmeye başladılar. Bilhassa, düzlemi dolduran eğriler gibi şeyler keşfedebildiler. Eğri bir eğridir, düzlem ise düzlem, ve ikisi karıştırılamaz. Aslında karışır. Peano adında bir adam bu çeşit eğriler tanlımıyordu ve olağandışı bir ilgi konusu oldu. Çok önemliydi, ama daha çok dikkat çekiciydi çünkü bir şekilde zinciri kırdı, bir yanda gerçeklerden gelen diğer yanda ise bir insandan gelen saf zihinsel yeni matematik arasındaki ayrışma. Aslında, uzun zamandır sade insan aklının bile rahatlıkla görebildiği bir şeyi görmüş ve işaret ediyor olmamdan dolayı üzülüyordum. Ve burada size bir şey takdim edeceğim, düzlem-dolduran eğri nehirleri kümesi. Ve aslında, kendine doğru bir hikaye. Aslında 1875 ve 1925 arasındaki matematiğin dünyadan kopmaya hazırlandığı olağandışı bir dönemdi. Ve ben çocuk ve öğrenciyken örnek olarak kullanılan nesneler, görünen gerçeklik ile matematik arasındaki bağın kopması -- bu nesneler, ben bunları tamamen altüst ettim. Onları doğanın karmaşıklığının bazı özelliklerini tanımlamak için kullandım.
09:14
Evet, Hausdorff adında bir kişi 1919 yılında matematiksel şakadan başka bir şey olmayan bir sayı ortaya çıkardı. Ve ben de bu sayının pürüz için iyi bir ölçüm olduğunu buldum. Matematikteki arkadaşlarıma ilk söylediğimde "Saçmalama. Sadece [saçma] bir şey." dediler. Aslında saçmalamamıştım. Büyük ressam Hokusai bunu çok iyi biliyordu. Yerdeki şeyler yosun. Matematiği bilmiyordu; daha matematik de yoktu. Ve batı ile hiçbir bağlantısı olmayan bir Japondu. Bu kadar uzun süre resim çizmenin fraktal bir tarafı olmuştu. Bu konu hakkında uzunca bir süre konuşabilirim. Eiffel Kulesi'nin fraktal bir yanı var. Ve Bay Eiffel'in bu kule ile ilgili yazığı kitabı okudum. Ve ne kadar çok anladığı hayret vericiydi.
09:57
Bu çok karmaşık, karmaşık, karmaşık; Brownian döngüsü. Kariyerimin ortasında bir zamanda bir gün karar verdim, o kadar çok iş ile meşguldum ki kendimi test etmeye karar verdim. Herkesin uzun zamandır bakıyor olduğu bir şeye bakarak çarpıcı bir şekilde yeni bir şeyler bulabilecek miydim? Aslında, Brownian hareketleri adı verilen şunlara baktım -- sadece etrafında dolanıyor. Bir süre onunla oynadım ve başlangıç noktasına dönmesini sağladım. Sonra da asistanıma, ""Bir şey göremiyorum. Görselleştirebilir misin?" diye sordum O da yaptı, yani içine her şeyi koydu. Dedi ki: "Evet, böyle bir şey çıktı..." Ben de "Dur! Dur! Dur! Bir ada görüyorum." dedim. Ve inanılmaz! Aslında Brownian hareketinin pürüz değeri iki civarında olduğunda başladığı noktaya geri dönüyor. Ben 1.33 civarında ölçtüm. Tekrar, tekrar, tekrar. Uzun ölçümler, büyük Brownian hareketleri, 1.33. Matematiksel sorun: nasıl ispatlanacak? Arkadaşlarımın 20 yılını aldı. Onlardan üçünün eksik ispatları vardı. Bir araya geldiler ve hep birlikte ispatı buldular. Böylelikle matematikte büyük ödülleri [Fields Ödülleri] aldılar. Gördüğüm ama ispat edemediğim şeyleri ispat ettikleri için ödül alan 3 kişiden biri.
11:22
Şimdi herkes bana zaman zaman bir noktayı soruyor, "Nasıl başladı? Bu garip alana seni çeken neydi?" Aynı zamanda beni çeken başka neler vardı, makine mühendisi, coğrafyacı ve matematikçi vs. ve fizikçi? Aslında, garip bir şekilde borsa fiyatları inceleyerek başladım. Ve dolayısıyla burada teorim vardı, hakkında kitaplar yazdım, Finansal fiyat artışları. Solda uzun vadedeki veriyi görüyorsunuz. Sağ üstte, çok da moda olan bir teori görüyorsunuz. Çok kolaydı ve çok hızlı bir şekilde hakkında birçok kitap yazabilirsiniz. Bununla ilgili binlerce kitap var. Şimdi onu gerçek fiyat artışları ile karşılaştıralım. Ve gerçek fiyat artışları nerede? Aslında, bu diğer çizgiler gerçek fiyat artışlarını içeriyor ve benim yaptığım sahtekarlıklardan biriydi. Yani buradaki fikir kişi -- nasıl dersiniz? -- fiyat dalgalanmalarını modellemeliydi. Ve yaklaşık 50 yıl önce gayet iyi gidiyordu. 50 yıl boyunca insanlar beni bir şekilde küçümsediler çünkü onlar bunu çok çok kolay bir biçimde yapabiliyorlardı. Ama size söyliyeyim, bu noktada, insanlar beni dinlediler. Bu iki doğru ortalamadır. Standard & Poor, mavi olan. Ve en büyük beş süreksizlikler çıkarıldığında kırmızı olan Standard & Poor'unki. Aslında süreksizlikler bir nüanstır. Bu nedenle fiyat çalışmasında, bir kenara bırakılırlar. "Aslında, işin aktörleri. Ve burada geride kalana ilişkin ufak bir duyarsızlık sözkonusu. İşin aktörleri" Bu resimdeki beş aktör diğer bütün her şey kadar önemli. Başka bir deyişle, kenara bırakacağımız şeyler işin aktörleri değil. Bu işin aslı, asıl sorun. Eğer bunlarda ustalaşırsanız, fiyatta ustalaşırsınız.. Eğer bunlarda ustalaşamazsanız, ufak dalgalanmalarda yapabildiğiniz kadar ustalaşırsınız, ama o da önemli değil. Aslında, eğriler buradaki gibi olmalıdır.
13:25
Şimdi, ismimle alakalı küme olan son şeye geliyorum. Bu bir şekilde benim hayat hikayemdir. Ergenliğim Almanya'nın Fransa işgali sırasında geçti. Birkaç gün ya da hafta içinde kaybolacağımı düşünürken, büyük hayallerim vardı. Ve savaştan sonra, tekrar amcamı gördüm. Amcam çok ünlü bir matematikçiydi ve bana dedi ki, "Bak, benim 25 yıldır çözemediğim bir problem var, ve kimse çözemez. [Gaston] Julia ve [Pierre] Fatou adında adamların yapıları var. Sen de yeni bir şeyler, herhangi bir şey bulabilirsen kariyerini sağlama almış olursun." Çok basit. Ve ben de baktım, ve bende önce denemiş binlerce insan gibi hiçbir şey bulamadım.
14:15
Ama sonra bilgisayar geldi. Ve ben de bilgisayarı matematikteki yeni problemlere değil ama eski problemlere uygulamaya karar verdim --bunun gibi kıpır kıpır değil. Ve bir doğru üzerindeki noktalar olan gerçel sayılardan başladım, düzlem üzerindeki sayılara kadar sanal, karmaşık sayılara kadar ve bu da birinin yapması gereken şeydi. Ve bu şekil ortaya çıktı. Bu şeklin son derece olağan dışı bir karmaşıklığı var. Denklem orada gizli, z, z kare artı c'ye gidiyor. Çok basit, çok kuru. Bir o kadar da yavan Kolu bir kere çevirin, iki kere, iki kere, mucizeler ortaya çıkıyor. Demek istiyorum ki bu ortaya çıkıyor. Bunları açıkalamak istemiyorum. Bu ortaya çıkıyor. Bu ortaya çıkıyor. Çok karmaşık, çok uyumlu ve çok güzel şekiller. Bu yine, yine, yine, tekrar ederek oluşuyor. Ve, bu adaların, aslına büyük parça ile az çok aynı şey olduğunu bulmuş olmam benim başlıca buluşlarımdan. Ve ardından şunları, her tarafta olağandışı barok dekorasyonları görüyorsunuz. Bütün onların hepsi neyi var neyi yok sadece şu 5 sembolden oluşan şu küçük denklemden meydana geliyor. Ve ardından bu. Renk iki sebepten eklendi. İlk önce, çünkü bu şekiller o kadar çok karmaşıktır ki, kişi sayılardan bir anlam çıkaramaz. Ve onların grafiğini çıktı alacaksanız, bir çeşit düzen seçmeniz gerek. Ve bu yüzden benim ilkem her zaman şekilleri farklı renklerle sunmak olmuştur çünkü bazı renklendirmeler neyin aslında ne olduğunu ve olmadığını vurgulayabilir. Bu çok karmaşık.
16:00
1990 yılında, üniversiteden ödül kabul etmek için Birleşik Krallık, Cambridge'deydim. Ve üç gün sonra, bir pilot arazinin üstünde uçuyormuş ve şu şeyi buluyor. Peki bu nereden geldi? Bariz bir şekilde, uzaylılardan. Aslında, Cambridge'deki bir gazete bu "keşif" ile ilgili bir makale yayınlamıştı ve bir sonraki gün "Çok büyük boyutta bir Mandelbrot kümesi" diyen 5.000 mektup aldılar.
16:29
Evet, bitirmeme izin verin. Buradaki şekil sadece matematiksel bir çalışma sonucunda ortaya çıktı. Esrarengiz harikalar sonu olmayan tekrarlar sonucunda basit kurallardan türer.
Takip et: @kpancar |
|
''Benoit Mandelbrot'un Hayatı'' Bu Blog yazısı;
Eylül 06, 2011 tarihinde fraktal, fraktal geometri, geometri, matematik, matematikçiler kategori başlıklarında eklenmiş olup Muallim tarafından yayınlanmıştır. Ayrıca henüz yorum yapılmamış bir yazıdır. Yazımızda hatalı bir içerik olduğunu düşünüyorsanız lütfen 'kpancar@yahoo.com' mail adresimize bildiriniz. Dualarınızı bekleriz.
Matematik Konularından Seçmeler
matematik
(209)
geometri
(124)
üçgen
(49)
ÖSYM Sınavları
(46)
trigonometri
(38)
çember
(30)
fonksiyon
(28)
sayılar
(26)
alan formülleri
(25)
türev
(22)
analitik geometri
(19)
denklem
(18)
dörtgenler
(17)
limit
(16)
belirli integral
(13)
katı cisimler
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(4)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)
En Çok Okunan Yazılar
-
ÖSYM'nin 15/06/2019 Tarihinde gerçekleştirdiği TYT matematik sınavı, farklı tarzda ayırt edici sorular içermekle birlikte, 2018 yılı TY...
-
Ehl-i Sünnet itikâdını, nazım (şiir) olarak anlatan ünlü ve önemli eserlerden biri; kuşkusuz Emâlî kasidesidir. "Bed'ül Emali...
-
Bu yazıda Esma-ül Hüsna hakkında kısaca bilgi verildikten sonra Ebced hesabı ile arasındaki ilişkiyi açıklayıp bütün 99 ismin ebced değerle...
-
Eski zamanlarda bir kral, saraya gelen yolun üzerine kocaman bir kaya koydurmuş, kendisi de pencereye oturmuştu. Bakalım neler olacaktı?.. ...
-
Herhangi bir dörtgenin alanı köşegen uzunlukları ile köşegenlerin arasında yer alan açının sinüsünün çarpımının yarısı ile hesaplanır. Bura...
-
Çocukluğumuzda mutlaka uçurtma yapmayı denemiş veya satın alınan bir uçurtmayı uçurmak için yoğun çaba sarf etmişizdir. Hazır olarak alınanl...
-
Koordinat düzleminde çizilen birim çember için çember üzerinde alınan rastgele bir L noktasından x ve y eksenlerini kesecek biçimde bir doğ...
0 yorum:
Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."
İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...