İntegralde basit kesirlere ayırma yöntemi

Rasyonel şekilde verilen bir fonksiyonun integrali alınırken bazen pay kısmında yer alan ifade payda kısmında yer alan ifadeye polinom bölmesi yapılarak integral basit kesirlere ayrılır ve ayrılan basit kesirler ayrı ayrı hesaplanarak integral alma işlemi tamamlanır.

| | 0 yorum

Kısmi integrasyon metodu

Genellikle iki farklı fonksiyonun çarpımı şeklinde verilen fonksiyonların integralinde değişken değiştirme yöntemi işe yaramayacağından burada "kısmi integrasyon yöntemi" kullanılır. 

Logaritma (L), Terstrigonometrik fonksiyonlar (Arc), Polinom fonksiyon (P), Trigonometrik fonksiyon (T) ve üstel fonksiyon (Ü) sırasıyla hangisi önce geliyorsa (LAPTÜ) o fonksiyona u değişkeni verilip diferansiyeli alındıktan sonra kısmi integrasyon formülü kullanılarak integral alma işlemi yapılır.


 

| | 0 yorum

Logaritma ve üstel fonkiyonun integrali


Üstel ve logaritma biçiminde verilen fonksiyonların integrali hesaplanırken, üstel ve logaritma fonksiyon özelliklerinden yararlanılır. Türevden yararlanarak üstel fonksiyon ve logaritmanın integral kuralları oluşturulabilir. (Bkz: Logaritma Türevi)

 

Bazı durumlarda integral alma işleminde değişken değiştirme yöntemi kullanılır. Değişken değiştirme yönteminde hangi parçaya u deneceği ve bunun diferansiyelinin alınması son derece önemlidir.  Değişken değiştirme yöntemi ile integral alma kurallarında verilen integral formuna dönüştürülen logaritma fonksiyonun integrali, aşağıdaki formüller yardımıyla kolaylıkla hesaplanabilir.

 

 

lnx gibi bazı fonksiyonların integrali alınırken kısmi integrasyon metodundan yararlanılır. (Bkz: Kısmi İntegrasyon Metodu)
| | | 0 yorum

Ters trigonometrik fonksiyonların integrali

Ters trigonometrik fonksiyon biçiminde verilen fonksiyonlarda dik üçgen çiziminden yararlanarak dönüşüm yapılabilir. Bu şekilde elde edilen belirsiz integral, integral alma kuralları yardımıyla hesaplanır.

İntegrali alınacak fonksiyonun paydasındaki ifadenin ters trigonometrik fonksiyonların integralindeki forma dönüşebilmesi için paydaya uygun sayılar eklenir ya da çıkarılır bunun sonucunda elde edilen integral istenen biçime dönüştürülür daha sonra integral değeri hesaplanır. 

Trigonometrik fonksiyonların integrali

Trigonometrik fonksiyonların integrali hesaplanırken öncelikle verilen integral değişken değiştirme ve trigonometrik özdeşlikler yardımıyla uygun bir forma dönüştürülür daha sonra integral alma kuralları kullanılarak integral değeri hesaplanır.

Bazı trigonometrik integralde sadece değişken değiştirme işlemi sorunun çözümü için yetmeyebilir. Bu durumda integrali alınacak fonksiyon; trigonometrik özdeşlikler, yarım açı formülleri, toplam ve fark formülleri, dönüşüm ve ters dönüşüm formülleri kullanılarak daha basit bir forma dönüştürülür sonra integral alma işlemi yapılır. Aşağıdaki örnekte verilen fonksiyonun integrali alınırken sinü fonksiyonun yarım açı formülü kullanılarak integral daha basit bir forma dönüştürülmüş daha sonra değişken değiştirme işlemi ile integral hesabı yapılmıştır.
Sinüs veya cosinüs fonksiyonların çift kuvvetleri biçiminde verilen integrallerde derece trigonometrik özdeşlikler yardımıyla düşürülerek integral basit forma indirgenir. Örneğin sin²x ve cos²x fonksiyonlarının integrali hesaplanırken, yarım açı formüllerinden yararlanarak fonksiyonun derecesi düşürülür. Sonra bilinen integral alma kuralları kullanılarak integral değeri hesaplanır.
 
Sinüs veya cosinüs fonksiyonların tek kuvvetleri biçiminde verilen integraller, önce çift dereceli ve tek dereceli olacak biçimde iki çarpan halinde yazılır. Örneğin sin³x fonksiyonu sin²x ve sinx fonksiyonlarının çarpımı biçiminde olduğundan sin³x=sin²x.sinx şeklinde yazılır.  Daha sonra trigonometrik özdeşlik kullanılarak sin²x=1-cos²x yardımıyla integral basit bir forma dönüştürülür. Benzer şekilde cos³x fonksiyonu cos²x ve cosx fonksiyonlarının çarpımı biçiminde olduğundan cos³x=cos²x.cosx şeklinde yazılır.  Daha sonra trigonometrik özdeşlik kullanılarak cos²x=1-sin²x yardımıyla integral basit bir forma dönüştürülür.
 

Bazı trigonometrik fonksiyonların integralinde ters dönüşüm formüllerinden yararlanmak gerekebilir. Bu durumdafonksiyon öncelikle ters dönüşüm formülü kullanılarak uygun forma dönüştürülür daha sonra integral değeri hesaplanır.


| | | 0 yorum

İntegralde değişken değiştirme yöntemi

 Bazı integrallerde verilen fonksiyonun mevcut değişkenine göre integralini hesaplamak daha zor olabilir. Bu durumda uygun bir değişken değiştirme işlemi yapılarak integral daha basit bir forma dönüştürülür daha sonra integral alma kuralları kullanılarak integral değeri hesaplanır. 



Belirsiz integral alma kuralları

"Türevi alınmış bu fonksiyonun türevi alınmadan önceki hali nedir?" Bu sorunun cevabını bulmak için yapılan tüm işlemlere integral alma işlemi denir. İntegral alma işlemi kısaca sembolü ile gösterilir. Bir fonksiyonun integrali bağlı olduğu değişkene göre (x değişkenine bağlı olarak f fonksiyonun integrali) ∫ f(x).dx  şeklinde yazılır. Burada integral alma işleminde alt ve üst sınırlar gösterilmezse buna "belirsiz integral" adı verilir. Bazı belirsiz integral alma kuralları aşağıda verilmiştir. Bu kurallara bağlı olarak aşağıda örnekler sunulmuştur.

 

(NOT: 2018 yılından önceki matematik müfredatlarında aşağıda verilen tüm belirsiz integral alma kuralları yer alırken 2018-2024 Lise matematik öğretim programında sadece "polinom fonksiyonların integrali" müfredata alınmış daha sonra 2024 yılında yenilen matematik müfredatında integral ünitesi tamamen matematik konularından çıkarılmıştır.)

Köklü biçimde verilen fonksiyonlar öncelikle üslü biçimde yazılır daha sonra polinom fonksiyonların integrali gibi integral alma işlemi yapılır. Derecenin ve fonksiyonun ayrı ayrı bileşke şeklinde integrali alınır.

İntegral işleminde, pay veya paydada çarpanlara ayrıabilen bir ifade varsa öncelikle çarpanlarına ayırma işlemi yapılarak integral alma işlemi denenir. Çarpanlarına ayırma işleminde, basit kesirlerine ayırma yöntemi veya özdeşliklerden yararlanılır. Çarpanlara ayırma işlemi ile hesaplanamayan integrallerde değişken değiştirme veya kısmi integrasyon metodları kullanılır.


| | | 0 yorum

İslam Kütüphanesi Seçmeler

Matematik Seçme Konuları

Aşağıdaki Yazılar İlginizi Çekebilir!!!