Matematik Öğretiminde Modelleme Nedir?

Etiketler :
Matematik ve gerçek hayat problemlerinin arasındaki ilişkilerin oluşturulmasında matematiksel modelleme önemli rol oynar.Matematiksel modelleme; gerçek hayat problemlerinin matematiksel terimlerle çözümünü bulmayı temsil eden bir yöntemdir. Matematiksel modelleme; aslında gerçek hayat problemlerinin sadeleştirilmesi, soyutlanması ya da bir matematiksel forma dönüştürülmesidir. Matematiksel problem, bilinen tekniklerle matematiksel çözümü bulmak için kullanılabilir. Daha sonra bu çözüm yorumlanarak gerçek terimlere dönüştürülür.

Matematik öğrenimindeki modelleme etkinlikleri; kavramların doğrulanmasında, tanımlanmasında, genelleştirilmesindeki zorlukların ve stratejilerin gözlem ve analizinde, öğrenme ve iletişim kurma becerileri kazanma sürecinde etkin rol oynamaktadır. Matematik, kültürümüzün bir parçası ve bir sosyal fenomen olarak toplumda, doğada ve diğer disiplinlerde, uygulamalarıyla yer alır.

Matematiksel modelleme, hayatın her alanındaki problemlerin doğasındaki ilişkileri çok daha kolay görebilmemizi, onları keşfedip aralarındaki ilişkileri, matematik terimleriyle ifade edebilmemizi, sınıflandırabilmemizi, genelleyebilmemizi ve sonuç çıkarabilmemizi kolaylaştıran dinamik bir yöntemdir. Diğer bir şekli ile matematiksel modellemeler, matematiksel düşünme becerileri kazanılmasına ve bu becerilerin geliştirilmesine katkı sağlar.

Bilgisayar ortamında geliştirilen matematiksel modeller, matematikle iletişim kurulmasında olağanüstü öneme sahiptir. Özellikle, interaktif matematiksel modeller farklı disiplinlerin doğasındaki olgusal gözlemlerin mantıksal ilişkilerinin kurulabilmesinde ve soyut düşünmeye dayalı becerilerin kazınılmasında mükemmel fırsatlar sunar.

Matematiksel modellemeler ve uygulamaların öğrenimi ve öğretimi karmaşık ve zor bir alandır. Ancak, gerçek hayat problemlerinin matematiksel modelleri kavramsallaştırıldığı zaman, problemin karmaşıklığının sadeleştiğini ve anlamlandırmanın kolaylaştığını görürüz. Böylece matematiksel modeller, öğrenme sürecinde bilişsel yapıların oluşmasını kolaylaştırıp, öğrencilerin gerekli matematiksel bilgi ve becerilerini gerçek hayat problemlerine uygulayabilme davranışını kazanmalarını hızlandırır.

Kaynak: MEB Lise Matematik Programı-2005

0 yorum:

Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."

İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...

Aşağıdaki Yazılar İlginizi Çekebilir!!!

  • Dörtgende Açı Özellikleri ve ispatı03.02.2017 - 1 Yorum Dörtgenler bir çokgen çeşididir. Çokgenler kenar sayılarına göre isimlendirilmesi nedeniyle dört kenarı bulunan çokgene "dörtgen" ismi verilir. Dörtgenin açı özelliklerini bilebilmek için üçgen üzerindeki açı özelliklerini iyice kavramış olmak…
  • Yazının Estetiği Dolma Kalem Üreticileri01.05.2015 - 2 Yorum Graf von Faber-Castell 1761’de Kaspar Faber, Nürnberg yakınlarındaki Stein’da kurşun kalem üretmeye başladı. 4. jenerasyon Baron Lothar Faber 1839’da şirketi devraldığında kurşun kalemi kaliteli bir ürün ve dünyanın ilk markalı yazım gereci…
  • Tefsir Tarihi-1 Konu Özeti17.01.2014 - 0 Yorumİlahiyat lisans Tamamlama 2. Sınıf Ders Özetleri  ilitam kitaplarından yararlanarak özetleme yapılmıştır. Özetleme işleminde Ankara İlitam'ın uzaktan eğitim yayınları esas alınmıştır. öğrencilerimize faydalı olması amacıyla burada…
  • YKS 2020 Matematik Netleri Sayısal Bilgiler10.07.2020 - 0 YorumTemel Matematik testi Ortaöğretim kurumlarının son sınıfında okuyan öğrencilerin TYT Matematik Net ortalaması: 6,082 nettir. Bu ortalamaya liseden mezun olmuş olan adaylar da dahil edildiğinde, tüm adayların TYT Matematik Net ortalaması: 5,556 net…
  • İntegralle hacim hesabı06.07.2024 - 0 YorumBir geometrik forma sahip olan geometrik cisimlerin (prizma, piramit, silindir, koni,küre) hacimleri katı cisimlerin alan formülleri yardımıyla bulunabilir. (Bkz. Katı cisimlerin hacimleri) Düzgün bir geometrik formu olmayan cisimlerin veya bir…
  • Rum Suresi ve Bizansın Galibiyeti23.01.2009 - 0 Yorum "Elif-lâm-mîm. Rumlar (edna-en alçak yerde) yakın bir yerde yenilgiye uğradılar. Fakat onlar bu yenilgilerinden sonra birkaç yıl içinde galip gelecekler. Önce olduğu gibi sonra da Allah’ın dediği olur. O gün müminler Allah’ın yardımı sebebiyle…
  • Yaşamdan Fraktal Geometri Örnekleri06.09.2011 - 0 YorumFraktal Geometri, bir özel geometri dalı olarak ilk ortaya çıktığı yıllardan beri araştırıcıların hızla ilgisini çeken bir bilim alanı olmaya devam ediyor. Bu ilginin en önemli nedeni, fraktallarla doğal biçimler arasındaki benzerliğin sadece görsel…
  • Geometrinin Güncel Yaşamda Kullanım Alanları08.04.2013 - 0 Yorum Geometri günlük yaşamın hemen her alanında gereklidir. Geometride uzunluk, alan, yüzey, açı gibi kavramlar bazı nicelikleri belirlemede kullanılır. Geometri’nin en çok iç içe olduğu dallar cebir ve trigonometri, mimarlık, mühendislikler (Yol,…