Analitik geometri, matematiksel ve geometrik problemleri cebirsel yöntemlerle çözmeye yardımcı olan bir alanıdır. Bu konsept, noktaların ve şekillerin koordinatlarını açıklayarak, bunların birbiriyle olan ilişkilerini analiz etmeyi sağlar. Özellikle fizik, mühendislik ve bilgisayar bilimleri gibi alanlarda kullanılan analitik geometri, karmaşık problemleri daha kolay bir şekilde çözmeyi ve görselleştirmeyi sağlar. Bu sayede, uzayda ve düzlemdeki objelerin konumlarını, uzaklıklarını ve ilişkilerini anlamada büyük bir kolaylık sunar.
Net Fikir » koordinat sistemi
Analitik geometri ne işe yarar?
Düzlemde Dönüşüm Fonksiyonu ve Öteleme
Düzlemin noktalarını yine düzlemin noktalarına eşleyen bire bir ve örten fonksiyona düzlemin bir dönüşümü adı verilir. Analitik düzlemde verilen herhangi bir nokta düzlemde bir dönüşüm fonksiyonu altında aynı ya da farklı başka bir noktaya eşlenebilir.
Dönüşümler öteleme, yansıma ve dönme başlıkları altında incelenebilir. Bu dönüşümlerin ayrıntılarına geçmeden önce dönüşüm fonksiyonuna biraz örnek vermek yerinde olacaktır.
Dönüşümler öteleme, yansıma ve dönme başlıkları altında incelenebilir. Bu dönüşümlerin ayrıntılarına geçmeden önce dönüşüm fonksiyonuna biraz örnek vermek yerinde olacaktır.
Koordinatları bilinen üçgen alanı
Köşe koordinatları bilinen üçgenin alanını bulmak için, vektör bileşenlerin determinant kuralından yararlanılır. Determinantta SARRUS Kuralı olarak bilinen determinant hesabı, üçgenlerde köşe koordinatları bilindiği zaman veya köşe koordinatları bir şekilde bulunabildiği zaman, alan hesabında uygulanabilir.
Elipsin Analitik incelenmesi
Düzlemde sabit iki farklı noktaya uzaklıkları toplamı sabit olan noktaların geometrik yerine elips denir. Sabit olan bu noktalara elipsin odakları denir. Herhangi bir noktanın, elipsin odaklarına uzaklıkları toplamı, elipsin asal eksen uzunluğu olarak tanımlanır. Elipsin odakları x ekseni üzerinde ise bu elips yatay elips olarak isimlendirilir. Eğer Elipsin odakları y ekseni üzerinde ise bu elips; düşey elips olarak isimlendirilir.
Hiperbolün Analitik İncelenmesi
Sabit iki noktaya olan uzaklıkları farkı sabit olan noktaların geometrik yerine hiperbol adı verilir. Bu sabit noktalara da hiperbolün odak noktaları denir. Odakları birleştiren doğru parçasının tam orta noktasına hiperbolün merkezi denir. Hiperbolün odakları analitik düzlemde x ya da y ekseni üzerinde olabilir. Merkezi orijin olup odakları x ya da y ekseni üzerinde bulunan hiperbole merkezil hiperbol veya standart hiperbol adı verilir.
Koordinatları Verilen Noktanın Kuvveti
Koordinatları Verilen Noktanın Kuvveti:Herhangi bir noktaya göre çemberde kuvvet alınırken bu nokta çemberin iç veya dış bölgesinde olmasına göre kuvvet alma fonksiyonunda bir farklılık olmaz. Kuvvet alma aslında bu noktanın yardımıyla oluşturulan üçgenler ile meydana gelen bir benzerlik uygulamasıdır.
Bir noktanın koordinatları ile herhangi bir çembere göre kuvveti alındığında, Kuvvet alma fonksiyonu noktanın çembere göre durumunu belirtir. Yani verilen noktanın, çemberin iç bölgesinde, çemberin dışında veya çemberin üzerinde olup olmadığı tanımlanır.
X noktasının kuvveti denildiğinde, o noktanın merkeze olan uzaklığı koordinatlarda olduğu gibi iki nokta arası uzaklık formülünden bulunur. Daha sonra bu uzaklığın yarıçap ile olan farkları pisagor bağıntısı gereği yazıldıktan sonra, eğer sonuç pozitif tanımlı ise (yani sonuç pozitif çıkar ise) nokta çemberin dış bölgesinde olur. Çünkü noktanın çember merkezine uzaklığı, çemberin yarıçapından büyüktür. Bu sonuç negatif tanımlı olursa, noktanın çember merkezine olan uzaklığı, çember yarıçapından küçük olduğundan, nokta çember içerisinde kalır. Eğer sonuç 0 çıkarsa o zaman verilen nokta, tam olarak çember üzerindedir. Çünkü noktanın merkeze uzaklığı ile yarıçap uzunluğu birbirine eşittir.
Bir çemberde herhangi bir noktanın çember denklemine göre kuvveti, aşağıdaki özelliklere sahiptir.
Burada koordinatları verilen noktanın çembere göre kuvveti için gösterilen ispatı, daha iyi anlamak için bir örnek verelim. Örnekte rastgele bir noktanın çembere göre kuvveti alındığında, yani koordinatları çember denkleminde yerine yazıldığında, sonuç negatif çıkarsa bu noktanın çemberin iç bölgesinde olduğu anlaşılır. Aksi halde pozitif tanımlı olması durumunda, nokta çemberin dış bölgesindedir.
Kaynaklar: Geometri, Arif Şayakdokuyan, Mevsim Basım Yay., Ankara, 2012; Geometri, Turgut Erel, Bilnet Matbaacılık, İstanbul, 2014; Çember ve Daire, Kartezyen Eğitim Yay. ,İstanbul, 2014.Bir Doğru Parçasını İçten/Dıştan Bölen Nokta
Bir doğru parçasını belli bir oranda içten veya dıştan noktanın koordinatları bulunurken o noktalar arasındaki artış miktarından yola çıkarak verilen orana göre, istenen noktanın koordinatları bulunur.
Noktanın bir doğru parçasını içten veya dıştan bölecek şekilde olması aynı kurala dayanır. İki durumda da benzerlik teoreminden yararlanılarak oluşacak üçgenler arasındaki thales bağıntılarından yola çıkılarak ispat yapılır. Burada elde edilen formülün kullanılması zorunlu olmadığı gibi bazı durumlarda kat hesabı yapmaktan daha zor kullanıma sahip olacaktır. En iyi metot verilen orana göre katları yazdıktan sonra koordinatlar arasındaki farklardan yola çıkarak istenen koordinatın bulunması olacaktır.
Formülü kullanmaktan ziyade aşağıda belirtildiği şekilde 2.yolu kullanmak, çok daha kullanışlı ve güzel bir yöntem olacaktır.
Noktanın bir doğru parçasını içten veya dıştan bölecek şekilde olması aynı kurala dayanır. İki durumda da benzerlik teoreminden yararlanılarak oluşacak üçgenler arasındaki thales bağıntılarından yola çıkılarak ispat yapılır. Burada elde edilen formülün kullanılması zorunlu olmadığı gibi bazı durumlarda kat hesabı yapmaktan daha zor kullanıma sahip olacaktır. En iyi metot verilen orana göre katları yazdıktan sonra koordinatlar arasındaki farklardan yola çıkarak istenen koordinatın bulunması olacaktır.
Formülü kullanmaktan ziyade aşağıda belirtildiği şekilde 2.yolu kullanmak, çok daha kullanışlı ve güzel bir yöntem olacaktır.
İçten bölen nokta tam olarak doğru parçasını iki eşit parçaya ayırırsa o zaman bu nokta orta nokta olmuş olur ki bunun koordinatlarını bulmak daha kolay hale gelir. Sınır koordinatlarının toplamının yarısı orta noktanın koordinatlarını verir.
Paralelkenar dikdörtgen ve kare gibi şekillerin köşe koordinatları bulunurken de aynı mantıkla hareket edilir. Bu dörtgenlerin köşegenlerinin kesim noktası orta nokta olduğundan yukarıdaki örnekten yararlanarak; orta noktanın koordinatlarının bulunmasından hareketle, paralelkenar ve dikdörtgenlerin de köşe koordinatları bulunabilir.
Aşağıdaki örnekleri kendiniz çözerek konuyu daha iyi pekiştirebilirsiniz. Cevapları yanlarında verilmiştir. (Doğru parçasının belli bir oranda bölen noktanın koordinatları)
Aşağıdaki örnekleri kendiniz çözerek konuyu daha iyi pekiştirebilirsiniz. Cevapları yanlarında verilmiştir. (Dörtgenlerin köşe noktalarının koordinatlarının bulunması)
Üçgende Ağırlık Merkezi İspatı
Kenarortay, bir üçgenin herhangi bir kenarını iki eşit parçaya ayıran o kenara karşı köşesinden çizilen doğru parçasıdır. Üçgende kenarortaylar, üçgenin iç bölgesinde bir noktada kesişirler. Bir üçgenin bütün kenarortayların kesişim noktasına, o üçgenin ağırlık merkezi denir. Herhangi iki kenarortay çizildiğinde kesişim noktasından çizilen üçüncü doğru parçası da kenarortay olur. Bir üçgende iki kenarortayın kesişmesiyle oluşan nokta ağırlık merkezidir. Aşağıdaki ABC üçgeninde [BE] ve [CD] kenarortaylarının kesiştikleri G noktasına, ABC üçgeninin ağırlık merkezi denir.
TEOREM: Ağırlık merkezi; üzerinde olduğu kenarortayı, kenara 1 birim, köşeye 2 birim olacak şekilde parçalara ayırır. Aşağıdaki şekilde ağırlık merkezinin benzerlik yardımıyla ispatı verilmiştir.
TEOREM: Bir üçgenin ağırlık merkezinin, üçgenin herhangi bir köşesine olan uzaklığı, bu köşeden geçen kenarortayın uzunluğunun 2/3'üne eşittir. Aşağıdaki şekilde bu teoremin benzerlik yardımıyla ispatı verilmiştir.
TEOREM: Üçgenin ağırlık merkezi ile orta tabanının kenarortay üzerinde ayırdığı uzunluklar köşeden kenara doğru sırasıyla 3, 1 ve 2 sayılarıyla orantılıdır. Aşağıdaki şekilde bu teoremin benzerlik yardımıyla ispatı verilmiştir.
TEOREM: Dik üçgende hipotenüse ait kenarortay uzunluğunun hipotenüs uzunluğunun
yarısıdır. Aşağıdaki şekilde bu teoremin benzerlik yardımıyla ispatı ve çemberde açılar yardımıyla ispatı verilmiştir. (Bkz. Çemberde Açılar)
Kenarortaylar üçgenin alanını altı eşit parçaya bölerler. G ağırlık merkezinden köşelere doğru parçası ile birleştirildiğinde üçgenin alanı, üç eşit parçaya bölünür. G ağırlık merkezi, kenarların orta noktaları ile birleştirildiğinde, üçgenin alanı üç eşit parçaya bölünür. Kenarların orta noktalarını birbirine birleştirdiğimizde üçgenin alanı dört eşit parçaya bölünür.
Üçgenin ağırlık merkezi, köşe koordinatları verilirse koordinat ekseninde daha kolay hesaplanabilir. Ağırlık merkezinin bulunabilmesi için, üçgenin köşe noktalarının koordinatları verilmeli ya da üçgenin köşe koordinatları, analitik geometri işlemlerinden/kurallarından yararlanarak, nokta ve doğru analitiğinin çeşitli uygulamalarıyla bulunabilmelidir.
Doğrunun Analitiği "Doğrunun Denklemi"
Eğim, dikey mesafenin yatay mesafeye oranlanması ile bulunur. Eğim, ondalık kesir veya yüzde olarak ifade edilir.Bir doğruda, eğim hesaplanırken doğrunun eksenle yaptığı açının tanjantına bakılır. Tanjant, bir dik üçgende karşı kenar uzunluğunu komşu kenar uzunluğuna bölmektir. Denklemi y = ax + b biçiminde olan bir doğrunun eğimi, x'in kat sayısına yani a değerine eşittir. Eğer doğru denklemi bu şekilde verilmezse ya denklemde eşitliğin bir tarafında y tek başına bırakılarak yazılmaya çalışır ya da x'in katsayısı y nin katsayısına oranlanır başına bir "-"yazılır.
Örnek: y = 2x + 5 doğru denkleminin eğimi 2'dir.
Örnek: y=-15x+4 doğru denkleminin eğimi -15 tir.
Örnek: 3x+4y=5 denkleminin eğimi -3/4 tür.
Örnek: -3x+5y=8 denkleminin eğimi 3/5 tür.
Örnek: 6x-3y=1 doğrusunun eğimi 6/3=2 olur.
Yukarıdaki şekillerde d doğrusunun farklı durumlarına karşılık oluşan (alfa) eğim açısı gösterilmiştir. Herhangi bir doğru verildiğinde o doğrunun x ekseni ile yaptığı açı biliniyorsa doğrunun eğimi kolayca bulunabilir. Açının tanjantı doğrunun eğimidir.
Örnek: Doğru x ekseni ile 45 derecelik açı yapıyorsa eğimi tan45=1 olur. Eğer doğru x ekseni ile 135 derecelik açı yapıyorsa doğrunun eğimi tan135=-1 olur.
x eksenine paralel doğruların eğimleri 0'dır.
y eksenine paralel doğruların eğimleri ise doğru x eksenine dik olduğu için açısal olarak tanjant fonksiyonu burada tanımlanamadığından doğruların eğimlerinden söz edilemez. Eğim=Tanımsızdır.
Örnek: y=3 doğrusunun eğimi x eksenine tam paralel bir doğru olduğu için herhangi bir açı oluşmayacaktır bu nedenle de bu doğrunun eğimi "0" olacaktır. x=5 doğrusunun eğimi yoktur.
Paralel Doğrular; Hiçbir ortak noktası olmayan doğrulara paralel doğrular denir. Paralel doğrular bir düzlem üzerinde hiçbir zaman kesişmezler. Paralel doğruların eğimleri eşittir.
Dik Doğrular; İki doğrunun keşisimleri varsa ve bu doğruların aralarındaki açı 90 derece ise bu doğrular birbirine diktir. Dik olan doğruların eğimleri çarpımı (-1)'dir. Yeni birinin eğimi dik olan diğer doğrunun eğiminin çarpma işlemine göre tersinin negatif işaretlisidir.
Doğruların denklemi
Analitik düzlemde, eğimi ve üzerinden geçtiği bir noktası bilinen bir doğrunun denklemi yazılabilir. Doğrunun eğimi verilmeden sadece iki noktası verilmişse yine doğrunun denklemi bulunabilir. İki noktası verilen bir doğrunun denklemi için öncelikle verilen iki noktadan geçen doğrunun eğimi hesaplanır. İki noktası verilen doğrunun eğimi; noktaların ordinatları farkının apsisleri farkına bölümü ile hesaplanır. Eğim bulunduktan sonra doğrunun denklemi aşağıda gösterildiği gibi yazılır.
Doğrunun denkleminin veren bu ifade; aslında doğru üzerinde yer alan iki farklı noktanın arasındaki eğim hesabından yola çıkılarak elde edilmiş bir denklemdir. Bu denklem bulunurken doğru üzerinde yer alan her iki noktanın arasında kalan eğimler eşit olması kuralı kullanılır.
Sadece iki noktası verilen doğruların denklemi yazılırken öncelikle iki noktadan doğrunun eğimi bulunur. Daha sonra yukarıdaki bir nokta ve doğrunun eğimi yardımıyla doğrunun denklemi yazılır.
Doğruların Grafikleri:
Doğruların grafiklerini çizmek için x ve y eksenlerini kestikleri noktalar bulunur. x eksenini kestiği nokta için y = 0 ve y eksenini kestiği nokta için x = 0 değerleri alınır. Eğer bir doğrunun eksenleri kestiği x ve y değerleri 0 çıkıyorsa bu doğru orijinden geçer. Bu durumda doğrunun koordinat düzlemindeki 1.veya 2.bölgeye olan uzantısının bulunması gerekecektir. Bunu belirlemek için de x yerine farklı bir nokta alınarak y değeri bulunur bu noktanın bulunduğu bölge ile orijinden doğru grafiği çizilir.
Ayrıntılı grafik çizme işlemleri için doğru grafiği çizme yazımızı okuyabilirsiniz. (Bkz. Doğruların Grafik Çizimi)
Ayrıntılı grafik çizme işlemleri için doğru grafiği çizme yazımızı okuyabilirsiniz. (Bkz. Doğruların Grafik Çizimi)
Bir Cismin İzdüşüm özellikleri
İzdüşüm: Bir cismin, bir düzlem üzerine,ışınların etkiyle düşürülen görüntüsüne, o cismin izdüşümü, görüntünün elde edilebilmesi için uygulanan metoda ise izdüşüm metodu denir.Sinemada perdeye yansıyan film,güneşli bir günde yolda yürürken meydana gelen gölgemiz birer izdüşüm kabul edilir. İzdüşüm metodunun uygulamaları cisimlerin biçimlerinin teknik ve meslek resmi yönünden anlatılmasına hizmet eder.
Doğruların Grafiğini Çizme
Doğruların Grafikleri:Doğruların grafiklerini çizmek için x ve y eksenlerini kestikleri noktalar bulunur. x eksenini kestiği nokta için y = 0 ve y eksenini kestiği nokta için x = 0 değerleri alınır. Eğer bir doğrunun eksenleri kestiği x ve y değerleri 0 çıkıyorsa bu doğru orijinden geçer. Bu durumda doğrunun koordinat düzlemindeki 1.veya 2.bölgeye olan uzantısının bulunması gerekecektir. Bunu belirlemek için de x yerine farklı bir nokta alınarak y değeri bulunur bu noktanın bulunduğu bölge ile orijinden doğru grafiği çizilir.
Birbirine paralel olan doğruların hiçbir ortak noktası yoktur. Yani bu doğruların denklemleri ortak çözüm yapılırsa çözüm kümesi boş küme olur. Çakışık doğruların ise tüm noktaları ortaktır. Yani doğru denklemlerinin çözüm kümesi sonsuz elemanlıdır.
Birbirine dik olan doğruların eğimleri çarpımı -1 dir. Paralel olan doğrularda ise yukarıdaki örnekten de görülebileceği gibi eğimleri birbirine eşit olur.
Aşağıdaki Yazılar İlginizi Çekebilir!!!
Matematik Konularından Seçmeler
matematik
(301)
geometri
(133)
ÖSYM Sınavları
(61)
trigonometri
(56)
üçgen
(49)
çember
(36)
sayılar
(32)
fonksiyon
(30)
türev
(26)
alan formülleri
(25)
analitik geometri
(23)
dörtgenler
(19)
denklem
(18)
limit
(18)
belirli integral
(14)
katı cisimler
(12)
istatistik
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(6)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)



































