ÖSYM Türev-İntegral Çıkmış Sorular

ÖSYM Türev-İntegral Çıkmış Sorular: Müfredat değişikliğinden dolayı çok fazla kısmın kaldırıldığı limit, türev ve integral konularından sadece AYT sınavında sorulan sorular yer almaktadır. 2018 yılından itibaren sorulan Limit, süreklilik, türev, integral konusu ile alakalı tüm sorulara ve cevaplara buradan ulaşabilirsiniz. 

2018 tarihinden sonraki (AYT) Limit-Türev-İntegral sorularını PDF olarak indirmek için tıklayınız. 


(2006 Öncesi) LYS-ÖSS gibi sınavlarda çıkmış limit sorularına ulaşmak için tıklayınız.

(2006 Öncesi) LYS-ÖSS gibi sınavlarda çıkmış türev sorularına ulaşmak için tıklayınız.

(2006 Öncesi) LYS-ÖSS gibi sınavlarda çıkmış integral sorularına ulaşmak için tıklayınız.

Diğer ÖSYM sınav sorularına ve güncel bilgilere ulaşmak için ÖSYM resmi sitesini kullanınız.
Sınav Sorularına ÖSYM sitesinden ulaşabilirsiniz.

Türev ve İntegral Konuları

Limit, türev ve integral konularıyla alakalı olarak blog sayfamızda yer alan konu başlıkları aşağıdaki gibidir. Konu anlatımı ve örnek sorularla ilgili ünite açıklanmaya çalışılmıştır. İstifadenize sunulan bu çalışmayı hayır dualarınızla destekleyiniz. Kolaylıklar dilerim.


LİMİT ve SÜREKLİLİK

Bir fonksiyonun bir noktada sürekliliği

Limitte ∞-∞ belirsizliği

Limitte ∞/∞ belirsizliği

Limitte 0/0 Belirsizliği

Trigonometrik fonksiyonların limitleri

Genişletilmiş reel sayılar kümesinde limit 

Sinx/x limiti ve ispatı 

Limitin tarihçesi 

 

TÜREV ve UYGULAMALARI

Türevle grafik çizimi 

Düşey ve yatay asimptot

Maksimum ve minimum problemleri

Bileşke fonksiyonun türevi ve ispatı

Bölüm türevi ve ispatı

Çarpım türevi ve ispatı 

Toplam ve fark türevi ispatı 

Polinom fonksiyonların türevi ve ispatı 

Doğrunun eğiminde türev 

L-Hospital Kuralı 

Ters trigonometrik fonksiyonların türevi 

Tanx ve Cotx fonksyionlarının türevi ve ispatı 

Sinx ve Cosx fonksiyonlarının türevleri ve ispatı 

Logaritma fonksiyonun türevi 

Artan ve azalan fonksiyonlar 

 

İNTEGRAL

İntegralle hacim hesabı

Daire yardımıyla integralde alan hesabı 

İki eğri arasında kalan alan 

Belirli integralle alan hesabı 

Belirli integral 

İntegralde basit kesirlere ayırma yöntemi

Kısmi integrasyon yöntemi

Logaritma ve üstel fonksiyon integrali

Ters trigonometrik fonksiyonların integrali

Trigonometrik fonksiyonların integrali

İntegralde değişken değiştirme yöntemi

Belirsiz integral alma kuralları

Belirsiz integral

Diferansiyel kavramı

Riemann toplamı

İntegralle hacim hesabı

Bir geometrik forma sahip olan geometrik cisimlerin (prizma, piramit, silindir, koni,küre) hacimleri katı cisimlerin alan formülleri yardımıyla bulunabilir. (Bkz. Katı cisimlerin hacimleri) Düzgün bir geometrik formu olmayan cisimlerin veya bir fonksiyonun bir eğri/eksen etrafında döndürülmesiyle meydana gelen dönel cisimlerin hacimleri integral yardımıyla hesaplanır.

Daire yardımıyla integralde alan hesabı

x2+y2=r2 denklemi merkezi (0,0) ve yarıçapı r br olan bir çember denklemidir. Bazı alan hesaplamalarında bu çember denkleminden yararlanarak bilinen daire alanı formülü kullanılıp belirli integralde alan hesabı işlemi yapılabilir. Bu çember denkleminde y değeri eşitliğin bir tarafında yalnız bırakılarak fonksiyon x'e bağlı olarak y=f(x) şeklinde yazılır, daha sonra belirlenen sınırlara göre integral alma işlemi yapılır.

İki eğri arasında kalan alan

 

İki farklı fonksiyon grafiği verildiğinde bu grafiklerin arasında kalan alanı bulurken integral işleminden yararlanılır. Bunun için öncelikle fonksiyonlar birbirine eşitlenerek ortak kesişim noktaları bulunur. Yani eşitlikten ortaya çıkan denklemin kökleri bulunur. Bu kökler, integral alacağımız belirli aralığın alt ve üst değerleridir. Belirli integral yardımıyla fonksiyonlardan grafiği üstte olandan, grafiği altta olanın kuralı çıkarılarak bulunan kapalı aralıkta alt ve üst sınırlar yerine yazılarak belirli integral alma işlemi yapılır böylece iki eğri arasında kalan alan hesaplanmış olur.

Belirli integralde alan hesabı


Bir fonksiyonun grafiğinin eksenlerle arasında kalan alan, belirli integral yardımıyla bulunabilir. Bunun için hangi eksen ile arasında kalan alan soruluyorsa bu değişkene göre fonksiyonun integrali alınır. Uç sınırları bilinen kapalı aralık için alt ve üst sınırlar integral sonucunda yerine yazılarak alan hesabı tamamlanmış olur. 
Riemann toplamında fonksiyon grafiğinin altına belli sayıda dikdörtgenler çizilerek elde edilen alt ve üst alanlar toplamı, eğrinin altındaki alanın tam değerini vermez. (Bkz. Riemann Toplamı) Riemann toplamında, eğirinin altına veya üstüne çizilen dikdörtgenlerin sayısı sonsuz tane yapıldığında yani limit değeri olarak hesaplama yapıldığında, hesaplanan alan; gerçek alan değerine ulaşır. Bu da integral hesabı ile alan değerini verir. Riemann toplamında elde edilen alt ve üst alanlar toplamının arasında kalan yaklaşık bir değere sahip alan hesabı, integral yardımıyla net bir sonuca yani gerçek alan değerine kavuşmuş olur.

Belirli integral


f(x) fonksiyonu bir [a,b] kapalı aralığında integrallenebilen bir fonksiyon olmak üzere F'(x)=f(x) olmak üzere f(x) grafiğinin a alt sınırı ile b üst sınırı arasında kalan alanını gösteren ifadeye "belirli integral" denir. 
Belirli integralde c integral sabiti yoktur. Belirli integralin sonucu bir nicelik ifade eder. İntegrali alınacak fonksiyonun önce belirsiz integralde işlenen integral alma kuralları yardımıyla integrali hesaplandıktan sonra alt ve üst sınırlar, integral sonucunda çıkan ifadede değişken yerine yazılarak sırasıyla birbirinden çıkarılır. Bu durumda elde edilen sonuç bir Reel sayı olur. Yani bulunan bu değer; kısaca fonksiyonun  grafiğinin o kapalı aralıktaki grafik ile eksen (x veya y) arasında kalan alanını verir. dx değişkenine göre integral alınmışsa x ekseni, dy 'e göre integral alınmış ise y ekseni baz alınarak alan hesabı yapılır.

f fonksiyonu [a,b] kapalı aralığında sürekli ise bu aralıkta integrali alınabilir. fonksiyon; bu kapalı aralıkta süreksiz olsa bile [a,b] aralığında fonksiyonun grafiğinin altında kalan alan hesaplanacağı için yine bu aralıkta fonksiyon integrallenebilir.


İntegrali alınacak fonksiyonun çizildiği kapalı aralıkta alt ve üst sınırlar birbirine eşit ise [a,a], burada herhangi bir alandan söz edilemeyeceği için belirli integral değeri 0 olur.
Belirli integral toplama ve çıkarma işlemleri üzerine dağılabilir. Sınırları uygun bir şekilde parçalı olarak yazılabilir. Belirli integral değeri (-1) ile çarpılırsa integralin alt ve üst sınırları yer değiştirir.
Belirli integralin türevi alınırsa bu durumda sonuç sıfır olur. Çünkü belirli integralde elde edilen değer bir sabit sayı olduğundan türevi alındığında sabit sayı(fonksiyonun) eğimi 0 olacağı için belirli integralin türev değeri de 0 bulunur. 
Parçalı biçimde verilen fonksiyonların bir kapalı aralıkta belirli integrali alınırken, parçalanma noktalarına göre (kritik nokta) fonksiyonlar ayrı ayrı belirlenir ve bu fonksiyonlara göre integral tekrar düzenlenip belirli integral hesaplanır.

Mutlak değerli fonksiyonlar da parçalı fonksiyon biçiminde yazıldıktan sonra kritik noktasına göre belirli integrali hesaplanır. Mutlak değerin kritik noktası bulunmadan integral alama işlemi yapılmaz. Kritik nokta bulunurken, mutlak değerin içindeki ifadenin kökleri bulunur.
Trigonometrik ifadelerin belirli integrali hesaplanırken, belirsiz integralde uygulanan integral alma işlemleri, trigonometrik özdeşlik ve formüller kullanılır. Daha sonra alt ve üst sınırlar değişken yerine yazılarak sonuç bulunur. Trigonometrik ifadelerde mutlak değerli bir ifade varsa mutlaka trigonometrik fonksiyonun bölgesindeki işarete bakılarak değerlendirme yapılır.

| | Devamı... 0 yorum

Diferansiyel kavramı

Türevlenebilir bir fonksiyonun belli bir aralıkta x değişkeninde meydana gelen sıfıra yakın değişim miktarı dx olmak üzere buna bağlı olarak y değişkeninde meydana gelen değişim miktarıdy ile gösterilirse; fonksiyonun değişim hızı dy/dx olarak ifade edilir.  
Fonksiyonun türevi f'(x)=dy/dx olarak gösterilirse; bu fonksiyonun x değişkenine göre türevi alınırsa dy/dx=f'(x) şeklinde ifade edilir. Türevi alınan fonksiyonda içler dışlar çarpımı yapılırsa: dy=f'(x).dx elde edilir. Bu ifade f(x) fonksiyonun x değişkenine bağlı olarak yazılan diferansiyelidir. Yani bir fonksiyonun diferansiyeli; fonksiyonun türevi ile hangi değişkene göre türev alındığının (dx) çarpımı olarak yazılır. 
Otomotivde de kullanılan diferansiyel kavramı, hareket ile ilgili önemli bir terimdir. Buradaki diferansiyel kavramı bir akstaki iki teker arasındaki devir dengesini sağlar. Özellikle virajlara sol ve sağ tekerler farklılık gösterdiği için gereklidir. Arka köprüde bulunan bir düzendir, arka tekerleklerin farklı dönmesini ve tork artışını sağlar.  Diferansiyel, motorlu taşıtlarda kullanılan bir aktarma organıdır. Diferansiyel, motor gücünü tekerleklere iletir. Aynı zamanda tekerleklerin farklı hızlarda dönmesi sağlar. 
Matematikçiler için diferansiyel kavramı türevle ilişkili bir kavramdır. Bir fonksiyonun hangi değişkene göre türevi alınacağını bildiren bir kavramdır, türevden farklıdır. Türev fonksiyonun direkt bir noktadaki eğimini verirken, diferansiyel kavramı böyle bir şey söylemez. df(x) fonksiyonun diferansiyelini gösterirken, df(x)/dx veya dy/dx veya f'(x) ifadesi de fonksiyonun türevini gösterir. Matematikte diferansiyel kavramı; "sonsuz küçük farklar" ve "fonksiyonların anlık değişim hızları" gibi sıkı bir temele oturtulmuş çeşitli kavramları içine alan sezgiselbir tanımdır. Diferansiyel terimi; matematik, diferansiyel geometri, cebirsel geometri ve cebirsel topoloji gibi matematiğin çeşitli dallarında, fizik, kimya, jeoloji gibi pek çok alanda kullanılır. 
Diferansiyel terimi, matematikte değişen miktarlardaki sonsuz küçük ("ihmal edilecek kadar sonsuz küçük") değişimi ifade etmek için sıklıkla kullanılır. Örneğin, eğer x bir değişkense, x'in değerindeki bir değişiklik genellikle Δx (delta x) ile gösterilir. Diferansiyel dx, x değişkenindeki sonsuz küçük bir değişikliği temsil eder. Sonsuz derecede küçük veya fonksiyonun sonsuz derecede yavaş bir değişimi fikri sezgisel olarak matematikte son derece faydalı olmuştur.
Tarihte bilinen kaynaklara göre diferansiyeli kavramı kısmen Arşimet tarafından sonsuz küçükleri içeren argümanların kesin olduğuna inanmamasına rağmen çalışmalarında kullanılmıştır. Ayrıca Isaac Newton diferansiyeli çalışmalarında kullanmış ve buna "akış" adını vermiştir.  Bununla birlikte "sonsuz küçük miktarlar" için diferansiyel terimini bugünkü anlamda kullanan ve gösterimini literatürde ortaya koyan Gottfried Leibniz'dir. Leibniz'in gösteriminde, eğer x değişken ise, o zaman dx, x değişkenindeki sonsuz küçük bir değişikliği veya farkı belirtir. Dolayısıyla, eğer y, x'in bir fonksiyonu ise, o zaman y'nin x'e göre türevi genellikle dy/dx ile gösterilir. Newton veya Lagrange diferansiyeli çalışmalarında (ẏ veya y') olarak göstermiştir. Diferansiyellerin bu biçimde kullanılması, örneğin Berkeley'in ünlü "The Analyst" çalışmasında olduğu gibi diferansiyel gösteriminin uygun olmayacağı konusunda çok fazla eleştiri almasına rağmen dy/dx gösterimi popülerliğini koruyarak, "sonsuz küçükler" hesabından yararlanarak, türev kavramı ortaya atılmıştır. y=f(x)'in x değişkenine göre türevinin, Δy/Δx oranı sonsuz için limiti alınarak elde edilebilecek anlık değişim oranı veya hızı grafiğin teğet çizgisinin eğimi olduğu fikrini yani türev kavramını belirlemiştir.
 
Fonksiyonun hangi değişkene göre diferansiyeli alınacaksa o değişken çarpım halinde yanına yazılmalıdır. Aşağıdaki örnekte u fonfsiyonun diferansiyeli du: fonksiyon t değişkenine bağlı olarak yazıldığı için du diferansiyeli alındıktan sonra dt çarpım halinde yanına yazılır.

 
 

Dairenin alanı integralle ispatı


Bir düzgün çokgende kenar sayısı ne kadar fazla olursa, düzgün çokgen o kadar çembere benzer. Bu durumda bir düzgün çokgende kenar sayısını sonsuza yaklaştırdığımızda, (limit değeri) düzgün çokgen artık çembere dönüşmüş olur. Dolayısıyla n kenarlı (sonsuz kenarlı) çokgenin alanı hesaplandığında, meydana gelen dairenin de alanı bulunmuş olur.  (Bkz. Dairenin Alanı) Bu şekilde dairenin alanın hesaplanmasında, limit yaklaşımı metodu kullanılır. 
Benzer şekilde dairenin alanı, elipsin alanında olduğu gibi integral yardımıyla da hesaplanabilir.  (Bkz. Elipsin alan ispatı) Bu yöntem ile dairenin alanı hesaplanırken; belirli integral ve açısal (kutupsal) dönüşüm kullanılır.

Dairenin alanı ve ispatı

Dairenin alanı; pi sayısı ile dairenin yarıçapının karesinin çarpımı ile bulunur. Dairenin alanını bulabilmek için, bir düzgün çokgenin düzenli olarak kenar sayısı arttırılır. Kenar sayısı ne kadar fazla olursa düzgün çokgen o kadar çembere benzer. Dolayısıyla n kenarlı (sonsuz kenarlı) çokgenin alanı hesaplandığında, meydana gelen dairenin de alanı bulunmuş olur. 

Bir daire esasında daire dilimlerinin toplamından meydana gelmiştir. Bu daire dilimleri, yan yana hiç boşluk kalmayacak şekilde sıralandığında, bir dikdörtgen meydana gelir. Ortaya çıkan bu dikdörtgenin alanı hesaplandığında dairenin alanına ulaşılır. 

Dairenin alan hesabı için, yukarıda anlatılan özellikle ilgili olarak hazırlanmış animasyonu, aşağıdaki videodan izleyebilirsiniz. (Daire Alanı-Youtube)
Yukarıdaki örnek matematiksel olarak ifade edilirse; Bir düzgün çokgende kenar sayısını ne kadar arttırırsak, o çokgen o kadar çembere benzer. Yani çokgenin kenar sayısını sonsuza yaklaştırdığımızda, çokgen (limit değeri) artık çembere dönüşmüş olur. Bu şekilde dairenin alanı hesaplanırken, limit yaklaşımından yararlanılır. (Bkz. sinx/x limiti)

Daire alanındaki mantıkla, benzer şekilde silindirin hacmine de ulaşılır. Yani bir silindir taban dairesi baz alınarak, çok sayıda silindir dilimine ayrıldığında, bu dilimler boşluk kalmayacak şekilde dizilirse ortaya bir dikdörtgen çıkar. Silindirdeki dilim sayısı sonsuz olduğunda, silindirin toplam hacmi, ortaya çıkan dikdörtgenin alanına eşit olacaktır. Konu ile ilgili hazırlanmış silindir hacim materyalini inceleyebilirsiniz.  (Bkz. Silindirin Hacmi Materyali) 

Yarıçapı, r olan dairenin alanı, integral yardımıyla da hesaplanabilir. Bunun için 4 tane eş daire dilimlerinden birinin alanı integralle hesaplandıktan sonra, çeyrek daire diliminin alanı bulunur.  Bulunan bu sonuç, 4 ile çarpılarak tüm dairenin alanı hesaplanmış olur. İntegral hesabında açısal (kutupsal) dönüşüm uygulanır.
Daire diliminin alanı bulunurken, dilimin gördüğü merkez açının ölçüsü bilinmelidir. (Bkz. Çemberde Açılar) Bunun için ya merkez açının ölçüsü verilmeli ya da bu daire dilimini çevreleyen yayın uzunluğu bilinmelidir. Buna göre, oran-orantı yardımıyla daire diliminin alanı hesaplanır.


Çemberin çevresi integralle ispatı

O merkezli ve r yarıçaplı bir dairenin çevre uzunluğunun, dairenin çap uzunluğuna (2r) oranı π sabit sayısını verir. Buna göre; Çemberin çevresi, çemberi çapı ile pi sayısının çarpımı ile bulunur. (Bkz. Çemberin Çevresi) Çemberin çevresi, yay uzunluğunun toplamını veren integral bağıntısı ile de hesaplanabilir. Bunun için Çember üzerinde alınan rastgele bir P noktasının kutupsal biçimi yazıldıktan sonra çemberin yay uzunluğunun toplamını veren integral yazılır. Aynı metod dairenin alanını veren bağıntı içinde kullanılır. (Bkz. Dairenin Alanı integral ispatı)
| | | | | | Devamı... 0 yorum

Çemberin çevresi ve ispatı

O merkezli ve r yarıçaplı bir dairenin çevre uzunluğunun, dairenin çap uzunluğuna (2r) oranı π sabit sayısını verir. Buna göre; Çemberin çevresi, çemberi çapı ile pi sayısının çarpımı ile bulunur. Çevre formülünün hesabı yapılırken, Archimedes’in (Arşimet) π sayısının değerini elde etmek için kullandığı yaklaşımdan yola çıkılarak ispatlama yapılabilir. Bu yaklaşımda pi sayısı şu gerçeğe dayanır: Bir çemberin çevre uzunluğu, n kenarlı düzgün kirişler ve teğetler dörtgenlerinin çevre uzunlukları arasındadır ve n arttırılarak iki çevre uzunluğu arasındaki sapma azalır. Bu gösterim, çokgenler ile çemberin çevre uzunluğu arasındaki fark yavaş yavaş tüketidiği için "tüketme yöntemi" olarak bilinir. Tüketme yöntemini kullanan Archimedes, π sayısının olduğu aralığı 3+10/71< Pi sayısı<22/7 olarak hesaplamış ve buna göre pi sayısının yaklaşık değerini de 3,14 olarak bulmuştur. 

Archimedes’in Pi saysısının bulunması için gösterdiği bu yaklaşımı, çemberin çevresi için kullandığımızda, çemberin içine çizilen kirişlerin oluşturduğu düzgün çokgenlerin kenar sayısı, ne kadar çok arttırılırsa çokgenin çevresi ile çemberin çevresi birbirine o kadar yakın olur. Buna göre düzgün çokgenin kenar sayısı, sonsuza yaklaştığında ise düzgün çokgen, artık çembere dönüşmüş olur ki bu durumda düzgün çokgenin çevresinin limit değeri, çemberin çevresini verir.


Çemberin çevresi, yay uzunluğunun toplamını veren integral bağıntısı ile de hesaplanabilir. Bunun için Çember üzerinde alınan rastgele bir P noktasının kutupsal biçimi yazıldıktan sonra çemberin yay uzunluğunun toplamını veren integral yazılır. Aynı metod dairenin alanını veren bağıntı içinde kullanılır. (Bkz. Dairenin Alanı integral ispatı)

O merkezli, r yarıçaplı dairede AOB merkez açısının gördüğü yay uzunluğunun ölçüsü |AB|;  oran ve orantı yardımıyla bulunur. Daireyi sınırlayan çember, ölçüsü 360° olan bir yay olarak kabul edilebilir. Buna göre orantı yapılırsa merkez açıya karşılık gelen yayın uzunluğu bulunmuş olur.



Riemann Toplamı

Bir düzgün geometrik şeklin alanı kolayca formüle edilebilir. Kenarları düzgün olmayan kapalı bir bölgenin alanını bulmak için bu bölge kenarları düzgün olan daha küçük kapalı bölgelere ayrılır. Küçük bölgelerin alanları yardımıyla büyük bölgenin alanı hesaplanabilir. Herhangi bir [a, b] aralığı verilmiş olsun. n∈ N ve kapalı aralığın sınır noktaları a ve b olmak üzere a ve b arasındaki artan sıralı x değerleri için; a = x0, x1 , x2 … xn-1 , xn=b şeklinde yazılıyorsa; P= {x0 , x1 , …, xn} şeklinde tanımlı P sonlu kümesine, [a, b] aralığının bir "bölüntüsü" denir.
 
[x0 , x1], [x1 , x2], …, [xn-1 , xn] kapalı aralıklarının her birine de [a, b] kapalı aralığının bir P bölüntüsüyle ilgili "alt aralıkları" denir. 
Bu tanımdaki alt aralıkların uzunlukları; Δx1 = x1 – x0 , Δx2 = x2 – x1 , ..., Δxn = xn – xn-1 şeklindedir. 
Δx1= Δx2 =Δx3 ... = Δxn ise yani kapalı aralık eşit olarak aynı ölçüde alt aralıklara ayrılmışsa bu P bölüntüsüne bir düzgün bölüntü denir. 
Örneğin [0,1] kapalı aralığını herbiri 1/5 birim olacak biçimde düzgün olarak parçalara ayırdığımızda {0, 1/5, 2/5, 3/5, 4/5 , 1} şeklinde eşit bölüntüler oluşturabiliriz. Bu şekilde oluşturduğumuz bir P bölüntüsü, eşit aralıklarla bölündüğünden [0, 1] aralığının bir "düzgün bölüntüsü" olur. 
Δx değeri verilen aralığın uç değerlerinin bölüntü sayısına bölümü ile bulunur. Bir kapalı [a, b] aralığı için n bölüntü sayısına göre; Δx=(b-a)/n şeklinde formüle edilebilir. Genelde düzgün bölüntüler hesaplamada daha kolay işlem yapabildiğimiz için tercih edilir. Düzgün ve düzgün olmayan bölüntünün daha net anlaşılması için konuya bir örnek verelim.

 Aşağıdaki örnekte P
1 düzgün bölüntü, P2 de düzgün olmayan bir bölüntü örneğidir. 

Belirli ve Belirsiz İntegral ÖSYS Soruları

İntegral (Alan ve Hacim Hesabı dahil) ile ilgili ÖSYM tarafından geçmiş yıllarda üniversite seçme/giriş sınavlarındaki sorulardan yayınlanmış olan soruları incelemek için tıklayınız.
| | | | Devamı... 0 yorum

Aşağıdaki Yazılar İlginizi Çekebilir!!!

Matematik Konularından Seçmeler