Cauchy-Schwarz eşitsizliği

Cauchy-Schwarz eşitsizliği, bazı matematik kitaplarında sadece Schwarz eşitsizliği veya sadece Cauchy eşitsizliği veya Cauchy-Schwarz-Bunyakovski eşitsizliği olarak da geçmektedir. Matematik bilimi teorisinde önemli bir eşitsizlik olup, çeşitli matematiksel uygulamalarda kullanılmaktadır. Cauchy-Schwarz eşitsizliği; analiz, lineer cebir, olasılık ve istatistik konuları  arasında sıklıkla kullanılmaktadır. Özellikle vektörler alanında, sonsuz seriler ve çarpım uygulamalarında, varyans ve kovaryans hesaplamalarında eşitsizlik çok kullanılmaktadır. Toplamlar için bu eşitsizlik ilk defa Augustin Louis Cauchy tarafından 1821'de ve integraller için ise bu eşitsizlik ilk defa Viktor Yakovlevich Bunyakovsky tarafından 1850'de ve sonra tekrar olarak Hermann Amandus Schwarz tarafından 1888'de ortaya atılmıştır. Bu nedenle eşitsizlik üç ismin adıyla matematik kitaplarda yer almıştır.

| | | | | Devamı... 0 yorum

Nesbitt Eşitsizliği ve ispatı

Nesbitt, tarafından 1903'te Educational Times isimli dergiye bir geometrik eşitsizlik olarak gönderilmiştir. (A. M. Nesbitt, Problem 15114, Educational Times, 3 (1903), 37-38) Aslında eşitsizliğin bir kısmı herhangi üç a,b,c pozitif gerçel sayısı için de doğrudur.



Nesbitt Eşitsizliği; üçgenler üzerinde uygulanırsa, üçgenin dış merkezleri ve alanları kullanılarak bunların arasındaki ilişki yazıldığında eşitsizliğin bir uygulaması gösterilmiş olur. Eşkenar üçgende geçerli olan bu eşitsizliğin yükseklik ve yarıçaplar arasındaki oranlamanın bir sonucu olduğunu gözlemleyebiliriz.




Nesbitt Eşitsizliği, Cauch Schwartz Eşitsizliği'nin bir sonucu bir eşitsizlik de diyebiliriz. Cauch Schwartz Eşitsizliği hakkında daha detaylı bilgilere ulaşmak için bağlantıyı tıklayabilirsiniz.  Aşağıda Nesbitt Eşitsizliğinin Cauch Schwartz Eşitsizliği ile nasıl ispatlandığı verilmiştir. (Bk.Olimpiyatlara Hazırlık Cauchy – Schwarz eşitsizliği problemleri ve çözümleri, Lokman Gökçe) (Bkz. Cauchy-Schwarz Eşitsizliği)

| | | | Devamı... 0 yorum

Vektörün Normu (Uzunluğu)

Başlangıç noktası orijin olan vektörlere konum(yer) vektörü denir. Eğer vektör orjinde değilse vektörün uzunluğu ve yönünü değiştirmemek kaydıyla orjine taşıyabiliriz. A vektörünün uzunluğu (normu), ||A|| sembolü ile gösterilir."i", "j" ve "k" temel birim vektörleri cinsinden yazılan bir vektörün uzunluk formülü, Pisagor teoreminin bir sonucudur. 

O halde: (i, j, k) standart birim vektörler olmak üzere; A(a,b,c) vektörünün normu temel birimleri ile birlikte üç boyutlu uzayda yazılırsa; A(a,b,c)=a.i+b.j+c.k şeklinde yazılır ve bu A vektörün normu; ||A|| ile gösterilir. Bir A vektörünün normu hesaplanırken, temel standart birim vektörü katsayıları olan (a,b,c) sayılarının karelerinin toplamının karekökü ile bulunur. 

İki boyutlu uzayda, B(x,y) vektörünün normu temel birimleri ile birlikte yazılırsa; B(x,y)=x.i+y.j şeklinde yazılır. ve bu vektörün normu temel birim katsayıları (x,y) karelerinin toplamının karekökü ile bulunur. 

Teorem: Bir V iç çarpım uzayında, vektör normu için aşağıdaki özellikler sağlanır.



Vektörün normu ile ilgili verilen özelliklerden iv) maddenin ispatı için Cauchy-Schwarz eşitsizliğinden yararlanmak gerekecektir. Cauchy Schwarz Eşitsizliği ile ilgili ayrıntılı yazıya ulaşmak için aşağıdaki bağlantıya tıklayınız. (Bkz. Cauchy-Schwarz Eşitsizliği)


Augustin Louis Cauchy

İlk büyük Fransız matematikçisi olan Cauchy, 1789’da Paris’te doğdu. 1814 yılında, karmaşık fonksiyonlar kuramını geliştirdi. Bugün, Cauchy teoremi adıyla bilinen ünlü teoremi ifade ederek ispatladı. Bu alanda integraller ve bunların hesaplama yöntemleri yine Cauchy tarafından verildi. Bu sahadaki eseri 1827 yılında basıldı. 1815 yılında, Fermat’ın bir teoreminin ispatını verdi.1816 yılında sıvılar üzeirnde dalgaların yayılmasının kuramını içeren yaptıyla Akademi ödülünü aldı. 1815 yılında Polytechnique’te analiz öğretmeni ve profesör oldu. Sorbonne’a ve College de France’a girdi. Her işte başarılı oluyordu.
Akademiye haftada iki çalışma sunuyordu. Geliştirdiği ve yaptığı çalışmaları öğrenmek için Avrupa’nın her yanından matematikçiler geliyordu. 1816 yılında Akademiye başkan seçildi.1816 yılından itibaren cebir ve mekanik dersleri vermeye başladı. 1830 devriminden sonra bağlılık andını kabul etmediği için görevinden ayrıldı ve Torino’ya giderek kendisi için açılan matematik kürsüsünde çalışmaya başladı. 1833’te Bordeaux Dükü’nün fen eğitimini yönetmek üzere Prag’a çağrıldı. 1838’de Paris’e döndü. Paris Fen Fakültesi matematiksel gökbilim profesörlüğüne atandı ve 1852 yılına dek bu görevine devam etti. Cauchy, arı ve uygulamalı matematiğin bütün bölümleriyle ilgilendi.
Ama tarihe çözümleme üstüne yaptığı çalışmalarla geçti. 1821’de yayımlanan Cours d’analyse adlı kitabında çözümlemenin ana ilkelerini gözden geçirdi ve bunları yapıcı bir biçimde eleştirdi; böylece elementer fonksiyonların ve serilerin incelenmesine kesinlik kazandırdı. Cauchy herşeyden önce, karmaşık bir değişkenin fonksiyonları kuramını ortaya atmıştır. Bu konuda çıkış noktası karmaşık bölgelerde integrallemeydi (1814 - 1830): eğrisel integrali tanımladı, bunun temel özelliklerini kanıtladı ve kalanlar hesabını ortaya attı. İkinci grup çalışmasında (1830 - 1846) fonksiyonların serilere açılımını ve karmaşık diferansiyelleme ya da analitiklik kavramlarını inceledi. Yaptığı cebir çalışmaları (yerine koyma hesabı, determinantlar ve matrisler kuramı, gruplar ve cebirsel genişlemeler kuramının oluşturulması) XIX. yy tarihsel hareketine, cebirsel yapıların bulunması ve incelenmesi biçiminde geçti. Cauchy mekanik alanında esneklik kuramının matematikle ilgili yönünü düzenledi. Gökbilim hesaplarını kolaylaştırdı ve hatalar kuramını geliştirdi. Fonksiyonlar kuramında da çok yenilikleri olan Cauchy, Cauchy - Riemann denklemleri, Cauchy teoremi, Cauchy integral formülü ve cauchy esas değeri buluşları sayılabilir. Bu saydığımız bağıntılar oldukça geniş buluşlardır. Karmaşık analizde çok uygulaması olan çok derin konuları içine almaktadır. İstenildiği kadar da genişletilip ilmin diğer dallarına uygulanabilirliği vardır.
| | Devamı... 0 yorum

Aşağıdaki Yazılar İlginizi Çekebilir!!!