Net Fikir » analitik geometri
Çemberin parametrik denklemi
Çemberle doğrunun birbirine göre durumları
Çemberin Analitik incelemesi
Buna göre birinci bölgedeki eksenlere teğet çember şöyle olur: (x−r)2+(y−r)2=r2İkinci bölgedeki eksenlere teğet çemberin denklemi: (x+r)2+(y-r)2=r2 olur.Üçüncü bölgedeki eksenlere teğet çemberin denklemi: (x+r)2+(y+r)2=r2 olur.Dördüncü bölgedeki eksenlere teğet çemberin denklemi de (x-r)2+(y+r)2=r2 olur.
Merkezi M(a,b) ve yarıçapı r olan çemberin standart denklemi: (x−a)2 + (y−b)2 = r2 çemberin standart denklemi binom özelliğinden yararlanarak azalan kuvvetlere göre açılırsa:
(x−a)2+(y−b)2=r2 ⮕ x2 − 2ax + a2 + y2−2by + b2 = r2
x2+y2−2ax−2by + (a2+b2−r2) = 0 bulunur.
Bu ifade kısa bir şekilde D, E ve F katsayılarıyla D=−2a, E=−2b ve F=a2+b2−r2 olacak biçimde en sade halde düzenlenirse; x2+y2+Dx+Ey+F=0 çemberin genel denklemi elde edilir. Bu genel çember denkleminde, çemberin merkezi M(-D/2, -E/2) olur.
Analitik geometri ne işe yarar?
Analitik geometri, matematiksel ve geometrik problemleri cebirsel yöntemlerle çözmeye yardımcı olan bir alanıdır. Bu konsept, noktaların ve şekillerin koordinatlarını açıklayarak, bunların birbiriyle olan ilişkilerini analiz etmeyi sağlar. Özellikle fizik, mühendislik ve bilgisayar bilimleri gibi alanlarda kullanılan analitik geometri, karmaşık problemleri daha kolay bir şekilde çözmeyi ve görselleştirmeyi sağlar. Bu sayede, uzayda ve düzlemdeki objelerin konumlarını, uzaklıklarını ve ilişkilerini anlamada büyük bir kolaylık sunar.
Doğrunun doğruya göre simetrisi
Bir d1: a1x+b1y+c1=0 doğrusu, d2: a2x+b2y+c2=0 doğrusuna göre simetrisi alınabilir. Her nokta simetrik noktasıyla yer değiştirir ve bu simetri noktaları yeni doğrudan geçer. Bunun için öncelikle simetri alınacak d1 doğrusunun üzerinden bir nokta seçilir. (örn. kolaylık olması için genellikle x=0 veya y=0 değerleri kullanılır.) Bu noktadan d2'ye dik doğru çizilir. Çizilen dik doğrunun denklemi yazılıp, d2 ile kesişiminden ortak çözüm yapılarak kesişim noktası bulunur. Simetri noktası, noktanın noktaya göre simetrisi kullanılarak hesaplanır. Aynı işlemler, d1 doğrusu üzerinde ikinci bir nokta seçilerek yapılır. Böylece iki farklı nokta elde etmiş oluruz. Bu noktalar simetrisini bulacağımız yeni doğrunun üzerinde olan noktalardır. Bu yeni noktaları kullanarak simetrisini elde edeceğimiz yeni doğrunun eğimi hesaplanır. Sonra bir noktası ve eğimi bilinen doğru denkleminden doğrunun denklemi yazılır. Böylece d1: a1x+b1y+c1=0 doğrusunun simetrisi olan doğru bulunmuş olur.
d1: 2x + 4y − 12 = 0 üzerindeki iki nokta: x = 0 → y = 3 → A(0,3), y = 0 → 2x − 12 = 0 → x = 6 → B(6,0) olarak seçelim.
Dik doğruların kesişim noktaları: d2: x + 6y − 6 = 0 doğrusuna A ve B noktalarından geçen iki farklı dik doğru çizelim. d2: x + 6y − 6 = 0 Doğrusunun eğimi, m = −1/6 → dik doğruların (bu doğruları k ve m diye isimlendirelim) eğimi 6 olarak bulunur.
B(6,0) noktasının üzerinden geçtiği dik doğrunun denklemi m: y − 0 = 6(x − 6) → y = 6x − 36 olur.
B(6,0) noktasının üzerinden geçtiği dik doğru: y = 6x − 36 ile x + 6y − 6 = 0 doğrusunun kesişim noktasını bulalım.
E ve D noktalarından geçen doğrunun eğimi: m = (0 − (−33/37)) / (222/37 − (−24/37)) = (33/37) / (246/37) = 33/246 = 11/82 olur.
−407x + 3034y + 2442 = 0 elde edilir. Sonuç olarak: 2x + 4y − 12 = 0 doğrusunun x + 6y − 6 = 0 doğrusuna göre simetrisi: −407x+3034y+2442=0 olur.
Doğrunun simetrisi
Herbirine ayrı ayrı örnekler vererek konuyu pekiştirelim:
Örnek: 2x+3y−5=0 doğrusunun Orijine göre simetrisi nedir?
Orijine göre simetri: katsayıların işareti değişir. Buna göre simetri doğrusu: −2x−3y−5=0 olur.
Örnek: 4x−5y+6=0 doğrusunun x eksenine göre simetrisi nedir?
x eksenine göre simetride y nin işareti değişir. Buna göre simetri doğrusu 4x+5y+6=0 olur.
Örnek: 7x + 2y − 3 = 0 doğrusunun y eksenine göre simetrisi nedir?
Y eksenine göre simetride sadece x’in işareti değişir. Buna göre simetri doğrusu: (-7x + 2y - 3 = 0) olur.
Örnek: 3x + 4y − 7 = 0 doğrusunun y = x doğrusuna göre simetrisi nedir?
Y = x doğrusuna göre simetride x ve y’nin katsayıları yer değiştirir. Buna göre simetri doğrusu: (4x + 3y - 7 = 0) olur.
Örnek: 5x − 6y + 2 = 0 doğrusunun y = -x doğrusuna göre simetrisi nedir?
Y = -x doğrusuna göre simetride x ve y’nin katsayıları yer değiştirir ve işaretleri de değişir. Buna göre simetri doğrusu: (-6x + 5y + 2 = 0) olur.
Noktanın doğruya göre simetrisi
Noktanın y=k doğrusuna göre simetrisi
Bir A(x, y) noktasının y=k doğrusu göre simetrisi; A'(x, 2k - y) olur.
Noktanın x=k doğrusuna göre simetrisi
Bir A(x, y) noktasının x=k doğrusu göre simetrisi; A'(2k - x, y) olur.
Noktanın y=x doğrusuna göre simetrisi
Birinci açıortay (y = x) doğrusu: Nokta A(a, b) → simetri noktası A'(b, a)
İkinci açıortay (y = −x) doğrusu: Nokta A(a, b) → simetri noktası A'(−b, −a) olur.
Noktanın eksenlere göre simetrisi
B(3,5) noktasının X eksenine göre simetrisi (3,-5), Y eksenine göre simetrisi (-3,5), Orijine göre simetrisi (-3,-5) olur.
C(-4,7) noktasının X eksenine göre simetrisi (-4,-7), Y eksenine göre simetrisi (4,7), Orijine göre simetrisi (4,-7) olur.
D(-6,-2) noktasının X eksenine göre simetrisi (-6,2), Y eksenine göre simetrisi (6,-2), Orijine göre simetrisi (6,2) olur.
E(5,-3) noktasının X eksenine göre simetrisi (5,3), Y eksenine göre simetrisi (-5,-3), Orijine göre simetrisi (-5,3) olur.
F(2,0) noktasının X eksenine göre simetrisi (2,0), Y eksenine göre simetrisi (-2,0), Orijine göre simetrisi (-2,0) olur.
G(0,6) noktasının X eksenine göre simetrisi (0,-6), Y eksenine göre simetrisi (0,6), Orijine göre simetrisi (0,-6) olur.
Noktanın noktaya göre simetrisi
Noktanın noktaya göre simetrisi ile ilgili aşağıda farklı örnekler verilmiştir:
A(2,5) noktasının B(4,3) noktasına göre simetrisi A'(6,1) olur.
C(-3,7) noktasının D(-1,2) noktasına göre simetrisi C'(-5,-3) olur.
E(-4,-6) noktasının F(-2,-2) noktasına göre simetrisi E'(-6,-10) olur.
G(3,-5) noktasının H(1,-1) noktasına göre simetrisi G'(5,-9) olur.
T(2,0) noktasının J(5,0) noktasına göre simetrisi T'(-1,0) olur.
K(0,4) noktasının L(0,1) noktasına göre simetrisi K'(0,7) olur.
Düzlemde Dönüşüm Fonksiyonu ve Öteleme
Dönüşümler öteleme, yansıma ve dönme başlıkları altında incelenebilir. Bu dönüşümlerin ayrıntılarına geçmeden önce dönüşüm fonksiyonuna biraz örnek vermek yerinde olacaktır.
Koordinatları bilinen üçgen alanı
Elipsin Analitik incelenmesi
Gündelik Hayatta Hiperbol Biçimleri
Hiperbolün Analitik İncelenmesi
Doğrunun Eğiminde Türev
Elipsin alanı ve ispatı
Elipsin çevresi ve ispatı
Vektörün Normu (Uzunluğu)
Başlangıç noktası orijin olan vektörlere konum(yer) vektörü denir. Eğer vektör orjinde değilse vektörün uzunluğu ve yönünü değiştirmemek kaydıyla orjine taşıyabiliriz. A vektörünün uzunluğu (normu), ||A|| sembolü ile gösterilir."i", "j" ve "k" temel birim vektörleri cinsinden yazılan bir vektörün uzunluk formülü, Pisagor teoreminin bir sonucudur.
O halde: (i, j, k) standart birim vektörler olmak üzere; A(a,b,c) vektörünün normu temel birimleri ile birlikte üç boyutlu uzayda yazılırsa; A(a,b,c)=a.i+b.j+c.k şeklinde yazılır ve bu A vektörün normu; ||A|| ile gösterilir. Bir A vektörünün normu hesaplanırken, temel standart birim vektörü katsayıları olan (a,b,c) sayılarının karelerinin toplamının karekökü ile bulunur.
İki boyutlu uzayda, B(x,y) vektörünün normu temel birimleri ile birlikte yazılırsa; B(x,y)=x.i+y.j şeklinde yazılır. ve bu vektörün normu temel birim katsayıları (x,y) karelerinin toplamının karekökü ile bulunur.
Teorem: Bir V iç çarpım uzayında, vektör normu için aşağıdaki özellikler sağlanır.
Vektörün normu ile ilgili verilen özelliklerden iv) maddenin ispatı için Cauchy-Schwarz eşitsizliğinden yararlanmak gerekecektir. Cauchy Schwarz Eşitsizliği ile ilgili ayrıntılı yazıya ulaşmak için aşağıdaki bağlantıya tıklayınız. (Bkz. Cauchy-Schwarz Eşitsizliği)
Koordinatları Verilen Noktanın Kuvveti
Koordinatları Verilen Noktanın Kuvveti:Herhangi bir noktaya göre çemberde kuvvet alınırken bu nokta çemberin iç veya dış bölgesinde olmasına göre kuvvet alma fonksiyonunda bir farklılık olmaz. Kuvvet alma aslında bu noktanın yardımıyla oluşturulan üçgenler ile meydana gelen bir benzerlik uygulamasıdır.
Bir noktanın koordinatları ile herhangi bir çembere göre kuvveti alındığında, Kuvvet alma fonksiyonu noktanın çembere göre durumunu belirtir. Yani verilen noktanın, çemberin iç bölgesinde, çemberin dışında veya çemberin üzerinde olup olmadığı tanımlanır.
Noktanın Doğruya Uzaklığı






































