Net Fikir » Tüm Yazılar
Belirli integralde alan hesabı
Belirli integral
f fonksiyonu [a,b] kapalı aralığında sürekli ise bu aralıkta integrali alınabilir. fonksiyon; bu kapalı aralıkta süreksiz olsa bile [a,b] aralığında fonksiyonun grafiğinin altında kalan alan hesaplanacağı için yine bu aralıkta fonksiyon integrallenebilir.

Kısmi integrasyon metodu
Genellikle iki farklı fonksiyonun çarpımı şeklinde verilen fonksiyonların integralinde değişken değiştirme yöntemi işe yaramayacağından burada "kısmi integrasyon yöntemi" kullanılır.
Logaritma ve üstel fonkiyonun integrali
Bazı durumlarda integral alma işleminde değişken değiştirme yöntemi kullanılır. Değişken değiştirme yönteminde hangi parçaya u deneceği ve bunun diferansiyelinin alınması son derece önemlidir. Değişken değiştirme yöntemi ile integral alma kurallarında verilen integral formuna dönüştürülen logaritma fonksiyonun integrali, aşağıdaki formüller yardımıyla kolaylıkla hesaplanabilir.
Ters trigonometrik fonksiyonların integrali
Ters trigonometrik fonksiyon biçiminde verilen fonksiyonlarda dik üçgen çiziminden yararlanarak dönüşüm yapılabilir. Bu şekilde elde edilen belirsiz integral, integral alma kuralları yardımıyla hesaplanır.
Trigonometrik fonksiyonların integrali
Trigonometrik fonksiyonların integrali hesaplanırken öncelikle verilen integral değişken değiştirme ve trigonometrik özdeşlikler yardımıyla uygun bir forma dönüştürülür daha sonra integral alma kuralları kullanılarak integral değeri hesaplanır.
Bazı trigonometrik fonksiyonların integralinde ters dönüşüm formüllerinden yararlanmak gerekebilir. Bu durumdafonksiyon öncelikle ters dönüşüm formülü kullanılarak uygun forma dönüştürülür daha sonra integral değeri hesaplanır.

































