Net Fikir » çok yüzlüler
Platon Katı Cisimleri
Platon Cisimleri: Bütün kenarları eşit ve yüzeyleri düzgün çokgen olan katı cisimlere Düzgün Katı Cisim denir.Beş Katı cisim olarak bilinen bu geometrik cisimlere, Platonik Cisimler de denir.Şimdiye kadar bilinen düzgün katılar 5 tanedir. Bunlar: düzgün dörtyüzlü, altı yüzlü(küp), sekiz yüzlü, onikiyüzlü ve yirmiyüzlü. Platon'un söylediği başka bir düzgün katı yoktur. Platon bu cisimlerin doğayı anlattığını düşünüyordu. Ona göre: Her yüzü bir eşkenar üçgen olan dörtyüzlü ateşi, sekizyüzlü havayı, yirmiyüzlü suyu, yüzleri kareler olan küp dünyayı ve yüzleri düzgün beşgenlerden oluşan onikiyüzlü ise, evreni simgeliyordu. Platon "Timaus" adlı eserinde bu düşüncesini açıklamıştı.Düzgün geometrik cisimlerden üçgen yüzlülerden 3 tane, beşgen yüzlülerden 1 tane ve bir tane de kare yüzlü vardır.
"Gizem ve güzellik, daha bir çok matematiksel olguda olduğu gibi
insanların ilgisin çokyüzüler üzerine çekmiştir. Bu uğurda kimileri
çokyüzlüleri kullanarak yaşamı, doğayı açıklamaya, kimileri sanatlarıyla
bütünleştirdi. Matematikçilerse her zaman olduğu gibi sadece
araştırdılar ve çokgensel düzlem parçalarıyla sınırlandırılmış cisimlere
çokyüzlü, bu düzlem parçalarına yüz, yüzlerin arakesitlerine ayrıt, üç
ya da daha çok ayrıtın birleştiği noktaya ise köşe dediler.
Çokyüzlüler içinde özellikle düzgün olanları insanların ilgisini
çekmiştir. Bazı arkeolojik kazılarda binlerce yıl öncesine ait taştan
yapılmış düzgün çokyüzlüler bulunmuştur. Bunca yıl uğraşılmış olmasına
karşın sadece beş tane düzgün çokyüzlü bulunabilmiştir. Yeni çokyüzlüler
bulma yönündeki çabalar, Öklid’in "Elemanlar" adlı kitabında bunun
başarılamayacağını ispatlaması ile son bulmuştur.
Çok Yüzlüler ve Çeşitleri
Yüzey parçaları ile sınırlanan kapalı uzay parçasına çokyüzeyli katı cisim; çokyüzeyli katı cismin sınırına da çokyüzeyli denir. Her çokyüzlü aynı zamanda çokyüzeylidir. Bir çokyüzeyliyi oluşturan her bir yüzey parçasına bu çokyüzeylinin yüzü, herhangi iki yüzün
ara kesitine bu çokyüzeylinin ayrıtı, ikiden fazla yüzün ara kesitine bu çokyüzeylinin tepe noktası
denir.
Çokyüzeyliler, yüzleri düzlemsel bölge olanlar ve olmayanlar olarak iki şekilde sınıflandırılır.
Çokyüzeyli katı cismin bütün yüzeyleri düzlemsel ve çokgensel bölge ise çokyüzlü katı cisim, eğer çokyüzeylinin bütün yüzey parçaları düzlemsel ve çokgensel bölge ise çokyüzlü denir.
Tekyüzey parçası ile sınırlanan kapalı uzay parçasına tekyüzeyli katı cisim, tekyüzeyli katı cismin sınırına da tekyüzeyli denir.
Ebu Kamil Şuca (H. 236-339)
Ebu Kamil Şuca Ünlü Müslüman cebir ve matematik alimidir. İsmi Şuca’ bin Eslem bin Muhammed Hasib el-Mısri olup, künyesi Ebu Kamil’dir. Matematikçiler arasında İbn-i Eslem el-Hasib (hesab, matematik bilgini) adıyla Ünlü oldu. Doğum ve vefat tarihleri belli değildir. Kaynaklarda 850-950 (H. 236-339) seneleri arasında yaşadığı ifade edilmektedir. Aslen Mısırlıdır.
Ebu Kamil Şuca’, matematik ve Özellikle cebir sahasındaki başarılarıyla dikkat çekti. Ünlü matematikçi Harezmi ile aynı devirde yaşadı. Harezmi’nin eserlerinden çok istifade etti. İkinci dereceden cebir denklemlerini, Harezmi’nin metodu ile çözüyordu. Bununla yetinmeyen Ebu Kamil, bu çözüm metodlarına bazı orijinal izahlar getirdi.
Lineer (birinci dereceden), kuadratik (ikinci dereceden) ve daha üst derecedeki denklemler, belirsiz denklemler ve tam sayı problemlerine ait çözüm yolları ortaya koydu. Cebir tarihinde ilk defa olarak ikinci derecenin üstünde denklemlerin çözümünü tam bir hassasiyetle gerçekleştirdi. Bu yüzden ona, Harezmi’den sonra ikinci cebir teorisyeni gözüyle bakılmaktadır. Cebirdeki bu otoritesini, İslamiyette fıkıh bilgisinin en mühim konularıdan birisi olan feraiz (miras taksimi) hesaplarının çözümünde kullandı.
Ebu Kamil Şuca’ın en Ünlü eseri Kitab-ül-Cebr vel-Mukabele adlı kitabıdır. Bu eserinde Harezmi’nin cebirini geliştirmek gayesini gütmüştür. Eserin önsözünde Harezmi’ye olan şükranlarını dile getirmiş, birinci bölümünde Harezmi’nin cebirini özetleyip ilavelerle açıklamıştır. Burada katsayıları irrasyonel (köklü) sayı olan karışık ikinci derecede denklemlerin çözümlerini göstermiştir. Böylece, Yunanlıların irrasyonel sayılarla ilgili yanlış bilgilerini çürütmüştür.
Eserin ikinci bölümünde, kendinden önce gelen Yunan ve İslam cebircilerinin çözmekte güçlük çektikleri hatta çözemedikleri geometrik problemlerin, kendi keşfi olan, cebirsel çözüm metoduyla kolaylıkla çözülebileceğini ortaya koymuştur. Bu bölümde çözdüğü problemler, bir daire içinde çizilmiş eşkenar beşgen, ongen ve onbeşgenin kenarının uzunluğunun nümerik olarak tayinini ihtiva etmektedir. Bu kenarları cebirsel denklemlerle hesaplayarak, cebirsel denklemleri öklit geometrisine uygulamıştır.
Eserin üçüncü bölümüne, ikinci dereceden belirsiz eşitlikler ve bu tür eşitlik sistemleriyle başlamaktadır. Kendisi bu eşitliklerin bazılarının yeni, bir kısmının daha önce incelenmiş olduğunu söylemektedir. Bu ikinci tip eşitlikler Ebu Kamil’in, Diophantos ve Aritmeticca’nın tesiri altında kalmadığını göstermektedir. Çokyüzlüler alanında da çeşitli çalışmalarda bulunmuştur. Yarıçapı r olan bir dâire içine çizilen düzgün on beş kenarlı çokgenin kenar uzunluğu hesabı ve merkez açının ölçüsünü cebirsel trigonometri ve denklemler yardımıyla göstermiştir.
Ebu Kamil, bu denklemlerden sonra, birinci dereceden denklem sistemlerini de ihtiva eden eğlendirici (dinlendirici) matematik problemleri üzerinde durmaktadır. Eserinin sonunda muayyen bir sayıdan başlayan sayıların karelerinin toplamını veren ifadeler üzerinde bilgi verilmektedir.
Ebû Kâmil, Harezmî’nin bir devamı ve geliştiricisi, Kerhî ve Ömer Hayyâm’ın öncüsü ve batıda Fibonacci’nin de üstadı olması hasebiyle, orta çağlarda cebir alanında yetişen bir dahîdir.
Ebû Kâmil, başarılarına ve orijinal metodlarına rağmen, maalesef islâm toplumunda ve ilim târihi içinde gereği gibi tedkîk edilip kıymeti anlaşılamayan âlimlerdendir. Modern araştırmalar, onun daha başka duyulmadık metodlarını ilerleyen yıllarda ortaya çıkaracaktır. Kendisini, El-Kerhi ve Ömer Hayyam takib ettiler. Batı aleminde ise Leonardo Fibonacci, Ebu Kamil’in metodunu benimsedi. Florian Cajori, matematik tarihi ile ilgili eserinde, miladi 13. yüzyılın ortalarında Ebu Kamil’in eserlerinin batı bilim dünyasında ve İslam aleminde matematik ilimleri dalında yegane başvuru kaynağı olarak kabul edildiğini ifade etmektedir. (Kaynak: Rehber Ansiklopedisi)
Ebu Kamil Şuca’nın yazdığı eserlerden bazıları şunlardır:
1) Kitabu Kemal-il-Cebri ve Temamihi ve-Ziyadetihi fi Usulihi: Bu eserinde Harezmi cebrini olgunlaştırdı ve yeni cebir metodları geliştirdi. Eserde, Ebu Berze’yi tenkid etti ve cebirdeki hatalarını ortaya koydu.
2) Kitab-ut Taraif-fi’l-Hisab: Bu eserde üç, dört ve beş bilinmeyenli denklemlerin çözüm metodları, örnekleriyle izah edilmektedir. Cebir problemlerinin çözümünde nesneler yerine harfler sembol olarak kullanılmaktadır. Eserin bir nüshası Hollanda’nın Leiden şehrindeki ünlü kütüphanede bulunmaktadır.
3) Kitab-üş-Şamil fil-Cebr vel Mukabele,
4) Kitab-ül-Vesaya bil Cüzuri,
5) Kitab-ul-Cem’ vet-Tefrik,
6) Kitab-ül-Hataeyn,
7) Kitab-ül-Kifaye,
8) Kitab-ül-Mesaha vel Hendese,
9) Kitabü’t-Tayr,
10) Kitabul-Miftah-il-Felah,
11) Risale fil-Muhammes vel-Mu’aşşar.
Archimides (MÖ 287-212)
İlginç bir hayat !!!
Arşimed, belki de suyun kaldırma kuvvetine ilişkin ilk fizik yasasını bulduğu için hepimizin tanıdığı bir matematikçi. Arşimed hakkında günümüze kalan bilgiler hiçbir Eski Çağ bilim adamının hayatıyla karşılaştırılamayacak kadar çoktur. Ancak bu bilgilerin yanı sıra onun hakkındaki yakıştırma öykülerce de bolcadır ; kimilerine göre bir hamamda yıkanırken suyun kaldırma kuvvetini bulup Eureka (buldum) nidalarıyla hamamdan yarı çıplak fırlamıştır. Başkalarına göre ise bu, Arşimed'in Kral Hieron'un tacındaki altın oranını saptamak için bir yöntem bulduğunda gerçekleşmiş bir olaydır.
Asla böyle bir olay olmamasına rağmen savaşta Roma'lıların gemilerini dev aynalarla yakma fikri yine onun kafasından çıktığı söylenir. Bu öyküler içerisinde en fazla bilineni ve meşhur olanı hamam öyküsüdür ki aşağıda buna değinilmiştir.
Arşimed, gençliğinin bir kısmını o zamanların bilim merkezi İskenderiye'de geçirmiş, daha sonra hayatının geri kalan kısmını yaşadığı, doğduğu Yunan kenti olan Syrakusa'ya dönmüştür. Syrakusa kentinin kralı II.Hieron'un yakın dostu olduğu biliniyor.
Arşimed, MÖ 213'te başlayan Roma kuşatmasında,ilginç bazı savaş araçları yaparak Syrakusa'nın düşmesini uzun süre engellemiş ancak kent Roma'lıların eline geçtiğinde ise Roma'lı bir asker tarafından öldürülmüştür. Bu konuda anlatılan hikaye şudur : Roma'lı asker Arşimed'i kumlara matematiksel bir diyagram çizerken bulur. Askerin teslim ol ikazına karşın Arşimed diyagramıyla ilgilenmeyi sürdürür ve "beni rahatsız etme" der ancak bu davranışını canıyla öder. Son sözünün “Şekillerimi bozmayın!” olduğu anlatılır.
Arşimet’in mezar taşına silindirin içine konulmuş bir küre çizilmiştir. Çünkü bu, Arşimet’in en çok gurur duyduğunu söylediği buluşudur: bir kürenin hacminin, içine tam olarak sığacağı silindirin hacmine oranı. Bu oranı Arşimet üçte iki olarak bulur ve silindirin hacmi bilindiği için kürenin hacmi tam olarak hesaplanabilir. İşaretli mezarı ölümünden yaklaşık 150 yıl sonra Cicero tarafından bulundu.
Arşimet'in mekanik alanında yapmış olduğu buluşlar arasında bileşik makaralar, sonsuz vidalar, hidrolik vidalar ve yakan aynalar sayılabilir. Bunlara ilişkin eserler vermemiş, ancak matematiğin geometri alanına, fiziğin statik ve hidrostatik alanlarına önemli katkılarda bulunan pek çok eser bırakmıştır. İlk defa denge prensiplerini ortaya koyan bilim adamı da Arşimet'tir. Bu prensiplerden bazıları şunlardır: Eşit kollara asılmış eşit ağırlıklar dengede kalır. Eşit olmayan ağırlıklar eşit olmayan kollarda aşağıdaki koşul sağlandığında dengede kalırlar: Bu çalışmalarına dayanarak söylediği "Bana bir dayanak noktası verin Dünya'yı yerinden oynatayım." sözü yüzyıllardan beri dillerden düşmemiştir. Geometriye yapmış olduğu en önemli katkılardan birisi, bir kürenin yüzölçümünün ve hacminin formüllerinin kanıtlamasıdır. Bir dairenin alanının, tabanı bu dairenin çevresine ve yüksekliği ise yarıçapına eşit bir üçgenin alanına eşit olduğunu kanıtlayarak pi değerinin yaklaşık olarak 3+l/7 ve 3+10/71 arasında bulunduğunu göstermiştir. Başka bir değişle bu formülleri suyun hacim kullanma esnasında alabileceği özkütle çapıdır.
Arşimet'in mekanik alanında yapmış olduğu buluşlar arasında bileşik makaralar, sonsuz vidalar, hidrolik vidalar ve yakan aynalar sayılabilir. Bunlara ilişkin eserler vermemiş, ancak matematiğin geometri alanına, fiziğin statik ve hidrostatik alanlarına önemli katkılarda bulunan pek çok eser bırakmıştır. İlk defa denge prensiplerini ortaya koyan bilim adamı da Arşimet'tir. Bu prensiplerden bazıları şunlardır: Eşit kollara asılmış eşit ağırlıklar dengede kalır. Eşit olmayan ağırlıklar eşit olmayan kollarda aşağıdaki koşul sağlandığında dengede kalırlar: Bu çalışmalarına dayanarak söylediği "Bana bir dayanak noktası verin Dünya'yı yerinden oynatayım." sözü yüzyıllardan beri dillerden düşmemiştir. Geometriye yapmış olduğu en önemli katkılardan birisi, bir kürenin yüzölçümünün ve hacminin formüllerinin kanıtlamasıdır. Bir dairenin alanının, tabanı bu dairenin çevresine ve yüksekliği ise yarıçapına eşit bir üçgenin alanına eşit olduğunu kanıtlayarak pi değerinin yaklaşık olarak 3+l/7 ve 3+10/71 arasında bulunduğunu göstermiştir. Başka bir değişle bu formülleri suyun hacim kullanma esnasında alabileceği özkütle çapıdır.
Arşimet parlak matematik başarılarından biri de, eğri yüzeylerin alanlarını bulmak için bazı yöntemler geliştirmesidir. Bir parabol kesmesini dörtgenleştirirken sonsuz küçükler hesabına yaklaşmıştır. Sonsuz küçükler hesabı, bir alana tasavvur edilebilecek en küçük parçadan daha da küçük bir parçayı matematiksel olarak ekleyebilmektir. Bu hesabın çok büyük bir tarihi değeri vardır. Sonradan modern matematiğin gelişmesinin temelini oluşturmuş, Newton ve Leibniz'in bulduğu diferansiyel denklemler ve integral hesap için iyi bir temel oluşturmuştur. Arşimet, Parabolün Dörtgenleştirilmesi adlı kitabında, tüketme metodu ile bir parabol kesmesinin alanının, aynı tabana ve yüksekliğe sahip bir üçgenin alanının 4/3'üne eşit olduğunu ispatlamıştır.
Arşimet, kendi adıyla tanınan “sıvıların dengesi kanununu” da bulmuştur. suya batırılan bir cismin taşırdığı suyun ağırlığı kadar kendi ağırlığından kaybettiğini fark ederek hamamdan "eureka" (buldum, buldum) diye haykırarak çırıl çıplak dışarı fırlaması, onunla ilgili en çok bilinen bir hikayedir. Söylendiğine göre, bir gün Kral II Hieron yaptırmış olduğu altın tacın içine kuyumcunun gümüş karıştırdığından kuşkulanmış ve bu sorunun çözümünü Arşimet'e havale etmiştir. Bir hayli düşünmüş olmasına rağmen sorunu bir türlü çözemeyen Arşimet, yıkanmak için bir hamama gittiğinde, hamam havuzunun içindeyken ağırlığının azaldığını hissetmiş ve "evreka, evreka" diyerek hamamdan fırlamıştır. Arşimet'in bulduğu şey; su içine daldırılan bir cismin taşırdığı suyun ağırlığı kadar ağırlığını kaybetmesi ve taç için verilen altının taşırdığı su ile tacın taşırdığı su mukayese edilerek sorunun çözülebilmesi idi. Çünkü her maddenin özgül ağırlığı farklı olduğundan aynı ağırlıktaki farklı cisimler farklı hacme sahiptir. Bu nedenle suya batırılan aynı ağırlıktaki iki farklı cisim farklı miktarlarda su taşırırlar.Eserleri Arşimed'in yapıtlarının çoğu Samoslu Konon ve Kyreneli Erastosthenes gibi dönemin ünlü matematikçileriyle yazışma biçiminde ve tamamen kuramsal içeriktedir. Yapıtlarının dokuz tanesinin Yunanca asılları günümüze kadar ulaşmıştır. Arşimed,Küre ve Silindir Yüzeyi Üzerine adlı yapıtında kürenin hacminin kendisini çevreleyen silindirin hacminin üçte ikisine, kürenin yüzey alanının ise en büyük dairesel kesitin alanının dört katına eşit olduğunu gösterdi. Dairenin Ölçümü'nde ise Pi sayısının 3+1/7 ile 3+10/71 arasında olduğunu gösterdi. Düzlemlerin Dengesi Üzerine adlı yapıtında ortaya koyduğu özgün katkıları yüzünden mekaniğin kurucusu olarak gösterilir. Arşimed mekanik, astronomi, matematik gibi alanlarda bir kısmı orijinal yazımıyla günümüze dahi ulaşan çok önemli yapıtlar sundu. Örneğin küçük bir bölümü Yunanca aslıyla diğer kısmı da Latince çevirisiyle günümüze ulaşan iki ciltlik Yüzen Cisimler Üzerine, hidrostatik dalında yazılmış bilinen ilk eserdir. Bu kitabın en önemli yanı Arşimed ilkesi olarak bilinen, 'Katı bir cismin kendisinden daha düşük yoğunlukta bir sıvıya daldırıldığında, katı cismin ağırlığının, yerini aldığı sıvının ağırlığı kadar azalacağını belirten' ilkeyi ilk kez açıklamasıdır. Daha sonraki çağlardan yapılan göndermelerle Arşimed'in, ışığın kırılmasını inceleyen yapıtı, yüzleri çokgenlerden oluşan ve küre içine yerleştirilebilen yarı düzgün çokyüzlüler (Bkz: Arşimed çok yüzlüleri) ile ilgili çalışmaları olduğu anlaşılıyor.
Arşimed özellikle sıvı içine atılan bir katı cisme taşan sıvının hacmiyle doğru orantılı olarak bir kaldırma kuvveti uygulanması prensibi, kendi adını taşıyan ve suyu yükseltmek için kullanılan burgu, Güneş ve Ay'ın ve gezegenlerin hareketini gösteren iki astronomi küresi gibi buluşlarıyla kendi çağında önemli bir ün edinmişti.
Arşimed neden bu kadar önemlidir?
Arşimed'in matematikte kullandığı ispatlar ve problemleri sunuş biçimi son derece çarpıcı ve özgündür. Onun eserlerinde kullandığı biçimin günümüz geometrisinin en yüksek standartlarında olduğu söylenmektedir. Ayrıca astronomi konusunda da ilkçağda önemli bir bilgin sayılmıştır. Bütün bunlara rağmen Arşimed'in ilk çağda matematiğin gelişimi üzerine etkisi, çalışmalarının çapı ve özgünlüğüyle eşdeğer bir boyuta ulaşamamıştır.
Onun sunduğu bilgiler örneğin Pi sayısı için gösterdiği yaklaşık değer; 22/7 sayısı ilk çağ ve ortaçağ boyunca kullanılmış, ancak yapıtlarının uzun yıllar karanlıkta kalması nedeniyle matematiğe olan katkısı, eserlerinin 8. yada 9. yüzyılda Arapçaya çevrilmesine kadar gerçekleşememiştir. Örneğin Arşimed'in başka matematikçilere katkı sağlaması amacıyla yazdığı "Yöntem" isimli çok önemli bir eseri 19. yüzyıla kadar karanlıkta kalmıştır. Keza Arap matematikçilerin 9. yüzyıldan sonra yaptığı bazı matematiksel katkılara değin Arşimed'in matematikteki özgün buluşlarına herhangi bir katkı yapılamamıştır.
Arşimed'in başka buluşlarınin değeri, kullanım alanları daha sonraki çağlarda anlaşılmış, örneğin matematik konusundaki yapıtları, 16 ve 17.yüzyıllarda yeniden çevrilip basılmaları sebebiyle Kepler, Fermat, Galilei, Descartes gibi matematikçileri derinden etkilemiştir. Son olarak, sizlerinde gördüğü gibi Arşimed binlerce yıl önce verdiği eserleriyle kendisinden sonraki bilimsel çalışmalara yön vermiş ve etkilemiş, günümüz biliminin oluşmasında kendisinden binlerce yıl sonra konuşulan özgün ve yeri doldurulamaz katkılar yapmıştır.
Çok Yüzlü cisimler için "Euler Formulü"
Üç boyutlu nesnelere katı cisim denir. Bir katı cisim herhangi bir ölçüye veya şekle sahip olabilir. Ancak çokyüzlüler; küreler,
silindirler ve koniler gibi birçok katı cismin kendisine has özellikleri vardır.Her biri yüz adını alan düzlemsel çokgenlerle sınırlanan katı cisimlere çokyüzlüler denir. Yüzlerin birbiriyle kesiştiği doğrular ayrıt olarak adlandırılır.
Üç veya daha fazla yüzün kesiştiği noktaya ise köşe denir. Bir çokyüzlüde, iki
yüzün kesiştiği yerde oluşan açıya iki düzlemli açı
denir.Bütün iki düzlemli açıları 180° den küçük olan çokyüzlüye dışbükey çokyüzlü denir; örnek olarak küp verilebilir. iki düzlemli açılardan en az biri 180° den büyük olan çokyüzlüye içbükey çokyüzlü denir. Bu da en az bir köşe noktasının
katının içine doğru olduğu anlamına gelir. Bütün yüzleri özdeş düzgün çokgenlerden oluşan çokyüzlüye
düzgün çokyüzlü denir. Köşelerdeki açılar eşittir. Beş tane düzgün çokyüzlü vardır. Bunlar, Yunan filozof
Platon’un adıyla anılır ve Platonik cisimler olarak adlandırılır.
Bir düzgün dörtyüzlü her biri eşkenar üçgensel
bölge olan dört tane yüze
sahiptir. Bir küpün altı tane karesel
bölge yüzü vardır.Bir düzgün sekizyüzlü, her
biri eşkenar üçgensel bölge
olan sekiz tane yüze sahiptir. Bir düzgün on iki yüzlü, her
biri düzgün beşgensel bölge
olan on iki tane yüze sahiptir. Bir düzgün yirmi yüzlü, her
biri eşkenar üçgensel bölge
olan yirmi tane yüze sahiptir. Yüzleri çeşitli düzgün çokgensel bölgelerden oluşan çokyüzlüye yarı düzgün çokyüzlü
denir. Bir otuz iki yüzlü, 20 üç-
gensel bölge ve 12 beşgensel
bölge olmak üzere toplam 32 yüzden oluşan bir yarı düzgün çokyüzlüdür.
Bir çok yüzlü için;köşe sayısı ile yüzey sayısının toplamından kenar(ayrıt) sayısı çıkarıldığında daima sabir bir değer olan 2 sayısı elde edilir. Bu formüle Euler çokyüzeyli formülü denir. Bu formül ünlü matematikçi Leonhard Euler (1707-1783) tarafından bulunmuştur.
Köşe Sayısı+Yüzey Sayısı-Ayrıt Sayısı=2
Aşağıdaki Yazılar İlginizi Çekebilir!!!
Matematik Konularından Seçmeler
matematik
(301)
geometri
(133)
ÖSYM Sınavları
(61)
trigonometri
(56)
üçgen
(49)
çember
(36)
sayılar
(32)
fonksiyon
(30)
türev
(26)
alan formülleri
(25)
analitik geometri
(23)
dörtgenler
(19)
denklem
(18)
limit
(18)
belirli integral
(14)
katı cisimler
(12)
istatistik
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(6)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)







