Riemann Toplamı

Bir düzgün geometrik şeklin alanı kolayca formüle edilebilir. Kenarları düzgün olmayan kapalı bir bölgenin alanını bulmak için bu bölge kenarları düzgün olan daha küçük kapalı bölgelere ayrılır. Küçük bölgelerin alanları yardımıyla büyük bölgenin alanı hesaplanabilir. Herhangi bir [a, b] aralığı verilmiş olsun. n∈ N ve kapalı aralığın sınır noktaları a ve b olmak üzere a ve b arasındaki artan sıralı x değerleri için; a = x0, x1 , x2 … xn-1 , xn=b şeklinde yazılıyorsa; P= {x0 , x1 , …, xn} şeklinde tanımlı P sonlu kümesine, [a, b] aralığının bir "bölüntüsü" denir.
 
[x0 , x1], [x1 , x2], …, [xn-1 , xn] kapalı aralıklarının her birine de [a, b] kapalı aralığının bir P bölüntüsüyle ilgili "alt aralıkları" denir. 
Bu tanımdaki alt aralıkların uzunlukları; Δx1 = x1 – x0 , Δx2 = x2 – x1 , ..., Δxn = xn – xn-1 şeklindedir. 
Δx1= Δx2 =Δx3 ... = Δxn ise yani kapalı aralık eşit olarak aynı ölçüde alt aralıklara ayrılmışsa bu P bölüntüsüne bir düzgün bölüntü denir. 
Örneğin [0,1] kapalı aralığını herbiri 1/5 birim olacak biçimde düzgün olarak parçalara ayırdığımızda {0, 1/5, 2/5, 3/5, 4/5 , 1} şeklinde eşit bölüntüler oluşturabiliriz. Bu şekilde oluşturduğumuz bir P bölüntüsü, eşit aralıklarla bölündüğünden [0, 1] aralığının bir "düzgün bölüntüsü" olur. 
Δx değeri verilen aralığın uç değerlerinin bölüntü sayısına bölümü ile bulunur. Bir kapalı [a, b] aralığı için n bölüntü sayısına göre; Δx=(b-a)/n şeklinde formüle edilebilir. Genelde düzgün bölüntüler hesaplamada daha kolay işlem yapabildiğimiz için tercih edilir. Düzgün ve düzgün olmayan bölüntünün daha net anlaşılması için konuya bir örnek verelim.

 Aşağıdaki örnekte P
1 düzgün bölüntü, P2 de düzgün olmayan bir bölüntü örneğidir. 

Düşey ve Yatay Asimptot

Bir fonksiyonun grafiği çizildiğinde bu grafikte sonsuza giden bir kolu varsa, bu kol üzerindeki rastgele bir nokta alındığında bu nokta sonsuza doğru götürüldüğünde bu noktanın bir doğruya ya da eğriye olan uzaklığı da sıfıra yaklaşıyorsa (limit değeri olarak) bu doğru ya da eğriye o fonksiyonun için asimptot değeri denir. Asimptotlar yatay ve düşey (dikey) olmak üzere, iki boyutlu uzayda iki kısımda incelenir.

0/0 neden belirsiz?

“0/0” ifadesi belirsizdir. Bunu özellikle bir soyut ve analitik bakış açısıyla şöyle açıklayabiliriz: Bir cebirsel yapı içerisinde bölme işlemi, paydanın sıfır olmadığı durumlarda tanımlıdır; dolayısıyla herhangi sıfırdan farklı bir reel ya da kompleks sayı için (a/0) ifadesi tanımsızdır. Ancak (0/0) özel bir konuma sahiptir; çünkü bu ifadenin tek bir değeri zorunlu kılan hiçbir cebirsel sayı değeri yoktur. Daha açık bir ifadeyle: Eğer (0/0 = L) gibi bir değere eşit olduğunu varsayarsak, bu durum mecburi olarak içler dışlar çarpımından  (0 = 0*L) eşitliğini gerektirir. 0*L= 0 eşitliği, her L Reel sayısı için sağlanır. Örneğin L yerine 0*4=0,  0*(-7)=0, 0*98=0, 0*√2=0, 0*0=0, 0*(-2/3)=0....vs gibi çeşitli L değerleri için doğru olur. Dolayısıyla bu 0*L=0 veya L*0=0 eşitliğinde L herhangi bir reel sayı olabileceğinden benzersiz bir L değeri atamak imkansız hale gelir. Bu nedenle 0/0 analizde ve özellikle limit kuramında, bir fonksiyonun değersel olarak değil, davranışsal olarak incelenmesi gereken durumları temsil eden bir belirsizlik durumunu gösterir.
Limit hesaplamalarında karşılaşılan (0/0) biçimleri, fonksiyonun çevresel değerlerinden hareketle çözülür; aksi hâlde bu ifade salt aritmetik düzlemde anlamsız kalır. Kısacası 0/0 sonucu hesaplanabilecek belirli bir sayı değildir; bölme gereği tanımlanamaz olduğu için ve hangi değerlere eşit olacağı tam olarak bilinemeyeceğinden 0/0 belirsizdir. Bu belirsizlik, cebirsel tanımlardan ziyade, analitik yöntemlerle ele alınması gereken yapısal bir özellik olarak ortaya çıkar.
0/0 bölme işlemi tanımından da 0/0 belirsizliğini açıklayabiliriz. Bir sayıyı kendisine böldüğümüzde 5/5 gibi sonuç 1 çıkar. 0 da bir sayıdır dolayısıyla 0/0 bölme işleminin de sonucunun 1 çıkması beklenir. Örnek olarak 0'a çok yakın sayılar seçerek bölme işlemlerini yapalım. 0.1/0.1 = 1, 0.001/0.001 = 1 ve 0.000001/0.000001 = 1. Bu örnekler bize “o hâlde 0/0 da 1 olabilir mi?” sorusunu akla getirir. Diyelim ki 0/0 işleminin sonucu 1 olsun. Bu 0/0 işleminin sonucunun böyle olmadığını irdeleyelim. 0 sayısını 0 dan farklı herhangi bir sayıya bölersek sonuç 0 çıkar. Örneğin 0/7 işleminin sonucu 0'dır. Pay 0 iken payda sıfıra çok yakın ama sıfır olmayan sayılar aldığımızda, sonuç yine 0 çıkar; örneğin 0/0.1 = 0, 0/0.001 = 0 ve 0/0.000001 = 0. Bu da bölmeyi paydayı gittikçe 0'a çok yakın sayılar seçtiğimizde  ifade 0/0 = 0 olabilir mi?” sorusunu akla getirir. Ancak önceki durumdan 0/0 sonucu 1 çıkarken şimdi burada 0/0 işleminin sonucu 0 çıkmış olur ki iki farklı yaklaşım iki farklı sonuç verdiği için bu durum bir çelişki oluşturur: Bir yandan sonuç 1 gibi görünürken diğer yandan 0 gibi görünmektedir. Bu bir çelişki olur. İşte bu nedenle 0/0’ın tek bir kesin sonucu yoktur ve bu ifade matematikte belirsiz olarak kabul edilir.
Analiz ve kalkülüs perspektifinden bakıldığında 0/0 ifadesi, yalnızca aritmetik düzeyde tanımsız bir oran olmaktan çıkarak, limit süreçlerinde belirleyici bir yapısal belirsizlik hâline gelir. Kalkülüsün temel kavramlarıyla ilişkilendirdiğimizde bu durum daha net anlaşılır. Limit hesabında herhangi bir sayıya yaklaşırken f(x)/g(x) değeri 0/0 çıktığında, (aynı sayıya yaklaşırken limit alınınca bile) farklı limit değerleri ortaya çıkacağı için fonksiyonlar farklı olduğunda 0/0 belirsiz olarak ifade edilir. Aşağıda iki farklı 0/0 belirsizliği limit örneği verilmiştir:
lim (x²-4)/(x-2) fonksiyonu x=2 için limit alınırsa 0/0 belirsizliği oluşur ve bunun sonucu 4 çıkar. lim (x-2)/(2x-4) fonksiyonu x=2 için limit alınırsa 0/0 belirsizliği oluşur ve bunun sonucu 1/2 çıkar. Aynı sayıya yaklaşırken 0/0 ifadesi en basitinden iki farklı sonuç çıkmıştır. Bu nedenle 0/0 ifadesi limitte bir belirsizlik olarak alınır.
Peki bölme işleminde 0 ile bölmek neden tanımsızdır? Yani A/0 neden tanımsızdır? Bölme işleminin matematikteki tanımı çarpma işleminin tersi üzerine kuruludur. Bir sayıyı başka bir sayıya böldüğümüzde aslında şu ilişkiyi kurarız. "a sayısı b sayısına bölündüğünde c elde ediliyorsa, bu ancak a=b*c eşitliğinin doğru olması halinde mümkündür." Bu tanımın geçerli olabilmesi için bölenin, yani paydanın sıfırdan farkl olması gerekir. Çünkü bölen olarak sıfır alındığında bu tanım çöker. Bir sayının sıfır ile çarpım her zaman sıfırdır dolayısıyla a = 0. c eşitliği ancak a'nin da sıfır olması durumunda sağlanabilir. a sıfır değilse denklem çözümsüz kalır, a sıfırsa da denklem tüm c değerleri için sağlanır, c yerine 0=5*0, 0=7*0, 0=13*0, 0=-4*0 gibi ne yazılırsa yazılsın sonuç doğru olur ve tek bir sonuç elde etmek mümkün olmaz. Bu durumda bölme işlemi, işlemlerin temel özelliği olan "her girdi için tek bir çıktı üretme' ilkesini kaybeder. Bu nedenle bölme işleminde hiçbir zaman payda 0 olamaz. Yani A/0 tanımsızdır.
Cebirsel olarak da A/0 bölme işlemi tanımsızlık sunar. a = b = 1 olsun. Önce 1=1 yani a = b eşitliği yazılsın. Sonra eşitliğin her iki tarafını a (1) ile çarpalım. a² = ab, ardından her iki taraftan da b² ifadesini çıkaralım. Buradan bir özdeşlik elde etmeye çalışalım. a² – b² = ab – b² iki kare farkı özdeşliği elde edilir. Bu da (a + b)(a – b) = b(a – b) şeklinde çarpanlara ayrılır. Buraya kadar her şey doğru olmuştur. Şimdi hatayı yapalım. Eşitliğin her iki tarafını (a – b)’ye yani (1-1=0) ile bölelim. a = b olduğundan a – b = 0’dır. Yani yapılan işlem 0’a bölmedir ve matematikte tanımsızdır. Buna rağmen bölünürse (a + b)(a – b)/(a-b) = b(a – b) /(a-b)  işleminin sonucu a + b = b bulunur ki bu durumda yani 1 + 1 = 1 çıkar ve buradan 2 = 1 gibi saçma bir sonuç elde edilir. Bu sonucun nedeni tamamen 0’a bölme hatasıdır; işlem geçersizdir. Bu işlem hatası bize 0 ile bölmenin tanımsız olacağını gösterir. 

Trigonometrik Fonksiyonların Limitleri

Trigonometrik fonksiyonların limitleri bulunurken verilen radyan cinsinden açıya göre trigonometrik fonksiyonun alacağı değer bilinmelidir. Ayrıca trigonometrik fonksiyonların özellikleri toplam-fark formülleri, dönüşüm formülleri, yarım açı formülleri bilinirse limit alma işlemlerinde kolaylık sağlanır. Verilen açı değeri fonksiyonda yerine yazılarak limit değeri bulunur.

Genişletilmiş Reel sayılar kümesinde limit

Genişletilmiş Reel sayılar kümesinde limit işlemleri yapılırken önce Genişletilmiş Reel Sayılar kümesinin özelliklerinin bilinmesi gerekir. Aşağıdaki örnekleri incelediğinizde bu küme üzerinde limit işlemleri yapmak daha kolay hale gelecektir.
| | | Devamı... 0 yorum

Limit ve Süreklilik ÖSYS Soruları

Limit ve Süreklilik ile ilgili ÖSYM tarafından geçmiş yıllarda üniversite seçme/giriş sınavlarındaki sorulardan yayınlanmış olan soruları incelemek için tıklayın...

| | | | Devamı... 0 yorum

Sinx/x Limiti İspatı

Sinx/x limiti hesaplaması yapılırken birim çemberden yararlanılabilir. Öncelike birim çember çizilir. 
Birim çemberde herhangi bir x açısının seçilmesi ile birlikte aşağıda da gösterildiği gibi |OH|, |TA| ve |PH| uzunluklarının trigonometrik oranlar cinsinden değerleri yazılır. Daha sonra oluşan üçgende kenar uzunlukları arasında aynı açılara göre kenarların ve yay parçasının arasındaki büyüklük sıralaması yazılır. Daha sonra yazılan bu sıralamada, eşitsizliğin her iki tarafı sinx ile bölünür. Ortaya çıkan fonksiyon x/sinx fonksiyonu olur. Bu fonksiyonun  x=0 noktasına yaklaşırken limit değeri alınırsa bu durumda x/sinx limiti ve sinx/x limit değerleri bulunmuş olur.

Burada x değeri sonsuza yaklaşırken aynı fonksiyon için limit hesabı yapılırsa sinx/x limiti 0 olur. Sinüs fonksiyonunun tanım aralığından yararlanarak değer aralığı yazıldıktan sonra eşitsizliğin her iki tarafı da x ile bölünerek sinx/x fonksiyonu elde edilir. Eşitsizliğin her iki tarafında x sonsuza yaklaşırken limit değeri hesaplanır.Daha sonra arada sıkışmış olan sinx/x fonksiyonun sonsuza yaklaşırken limit değeri bulunmuş olur. (Bu teoreme sandviç teoremi veya sıkıştırma teoremi adı verilir.)

.....Sıkıştırma teoremine göre, bir f fonksiyonunun x=a noktasını içeren bir aralıkta, bu noktadaki limit değerlerini birbirine eşit ve limitini L olarak hesaplayabildiğimiz g ve h fonksiyonları arasında kaldığını gösterebiliyorsak,f  fonksiyonunun bu noktadaki limiti de önceki limit değeri olan L'ye eşit olmak zorundadır. Limit fonksiyonun x=a noktasındaki değeri ile ilgilenmediği için, sıkıştırma teoreminin kullandığımız g(x)<f(x)<h(x) eşitsizliği x=a noktasında geçerli olmak zorunda değildir, önemli olan f(x) fonksiyonun değerinin bu aralıkta x=a dışındaki noktalarda, g ve h fonksiyonlarının arasında kalmasıdır. Sıkıştırma teoreminde g ve h fonksiyonlarının  bir noktadaki limitinin tanımlı ve eşit olduğunu biliyorsak, eşitsizliğe göre arada yer alan f fonksiyonunun da aynı noktadaki limitinin bu L değerine  eşit olması gerekmektedir. sinx/x fonksiyonun limit hesabı, bu sıkıştırma teoreminin uygulanışına güzel bir örnektir.

 


Bu özel limit kullanılarak farkı teoremlerin de ispatları yapılabilir. Sinüs fonksiyonu için geçerli olan bu limit özelliği tanjant fonksiyonunda da aynı şekilde uygulanabilir. 

Limitin Tarihçesi

Matematikçilerin, limit kavramının varlığından şüphelenmeye (bu kavramı sezmeye) başlamaları ile limiti tam olarak tanımlamaları arasında, yüzyıllarla ölçülebilecek kadar uzun zaman vardır. Hatta ilk çağ- larda bile limit kavramını hisseden matematikçiler vardı. Örneğin Archimedes, 2π sayısına olabildiğince yakın bir sayı elde edebilmek için köşeleri 1 birim yarıçaplı çemberin noktaları olan düzgün çokgenin çevresinden yararlanmış, bunun kenar sayısı sınırsız arttıkça çokgenin çembere, bu nedenle de çevresinin uzunluğunun 2π ye yaklaşacağını düşünmüştür. Bazı matematikçiler bu tür yaklaşımları, Rönesans Dönemine doğru, bir kısım alan hesaplamalarında da kullanmışlardır. 
17. yüzyılın ünlü matematikçilerinden Isaac Newton (1642-1727) ve Gottfried Leibniz (1646-1716), limiti kendilerinden önceki matematikçilere oranla çok daha doğru şekilde tanımlamışlar ve pek çok karmaşık limiti hesaplamışlardır. Newton ve Leibniz’in limit hakkındaki düşünceleri, bu kavramın gelişmesinde temel oluşturmuştur. 1754 yılında Fransız matematikçi d’Alembert (1717-1783), matematiğin daha ileriki konularının mantıksal temelinin limit kavramı olduğunu iddia etmiştir. Daha sonra ünlü matematikçi Cauchy (1789-1857), 1821 yılında yayınladığı “Cours d’Analyse” adlı eserinde limit tanımını, “Bir değişkenin ardışık değerleri, sabit bir sayıya olabildiğince çok yaklaştığında elde edilen son değerdir.” şeklinde yapmıştır. Bu tanım, bugün kullandığımız limit tanımına en yakın olandır. Günümüz matematikçilerinin kullandığı limit tanımı, 1860 yılında Alman matematikçi Karl Weierstrass (1815-1897) tarafından yapılmıştır.(Matematik-12, Emrullah KAPLAN, Paşa Yayınları,2011)

Karl Weierstrass, (Bkz.Karl Weierstrass) Bonn Üniversitesine hukuk okumak üzere gitmesine rağmen üniversiteden mezun olamadı. Daha sonra kendisi matematikle ilgilenmeye başladı. Laplace'ın Gök Mekaniğini üzerine yaptığı çalışmaları inceledi. Diferansiyel denklem sistemleri üzerinde çalışmalarda bulundu. Karl Weierstrass, 22 Mayıs 1798'de Münster Akademisine girdi.Uzun yıllar öğretmenlik yaptı. 1853 yılında abelyan fonksiyonlar üzerinde çalışmasını yayınladı.1856 da Berlin Üniversitesinde yardımcı profesörlük ünvanı elde etti ve Berlin Akademisine üye olarak seçildi. Weierstrass, 1864 ile 1897 yılları arasında Berlin Üniversitesinde matematik profesörü olarak görev yaptı 1897'de Berlin'de öldü.
1821’de Augustin Louis Cauchy (Bkz. Augustin Cauchy), Karl Weierstrass’ı takiben kullanılan limit tanımını  yunan alfabesindeki harfler olan  (ε, δ) harfleri (yunan alfabesindeki 5.harf küçük epsilon harfi ve yunan alfabesindeki 4.harf küçük delta harfi) kullanarak düzeltip, matematik literatüründe limitin tanımı olarak (ε, δ) tekniğini kabul ettirdi.

Limitin Tanımı: f(x) fonksiyonu, bir açık aralıkta tanımlanmış olsun ve L bir gerçek sayı olsun. Bütün ε>0 değerleri için, bir δ >0 değeri bulunabiliyor ki bütün 0<|x-a|<δ eşitsizliğini sağlayan x değeri için,  |f(x)-L|<ε eşitsizliği doğru ise; buradaki L değerine, "f(x) fonksiyonunun a noktasındaki limitidir" denir.
Limit ifadesinde, yaklaşmayı belirtmek için sağ tarafa doğru ok işareti kullanılır. x değişkeni, a'ya yaklaşırken f(x) fonksiyonunun limitinin L'ye yaklaştığı söylenir ve bu limit, sağ ok işareti ile limitin altına yazılarak gösterilir.  
19. yüzyıldan sonra  literatürde limitin gösterimi, (ε, δ) tanımlamasıyla kabul gördü. Tanımda yer alan ε harfi, her küçük pozitif sayıyı gösterir. Böylece “f(x) isteğe bağlı olarak L’ye yakın olur”, sonuçta f(x) fonksiyonu, (L − ε, L + ε) aralığında, iki sayı arasında yer alır demektir. Aynı zamanda mutlak değer işareti kullanılarak da bu aralık ifadesi yazılabilir 

Tanımda yer alan |f(x) − L| < ε.”x değişkeni, a’ye yaklaşırken” ifadesi, a’den uzak olan x’lerin bir δ  pozitif sayısından küçük olduğunu gösterir. x’lerin ya (a − δ, a) ya da (a, a + δ) aralığı içindeki değerleri 0 < |x − a| < δ ile ifade edilebilir. Buradaki yaklaşma miktarı için, x'in a değerine eşit olmaksızın en yakın noktasına kadar gelmesi anlamındaki çok çok kısa bir mesafe kadardır demek yanlış olmaz. İkinci eşitsizlikte; x değişkeni, a’nın δ uzaklığı içinde olduğunu ifade edilirken, ilk eşitsizlikte x ve a arasındaki uzaklık 0’dan büyüktür ve x ≠ a demek anlamına gelir. Bu tanım, fonksiyonun a noktasında tanımlı olmadığı zamanlarda ve fonksiyonun a değerindeki f(a) karşılığı, fonksiyonun o noktadaki limit değerinden L'den farklı olduğu zamanlarda da doğru olur. f(a)≠  L veya f(x), a noktasında tanımlı olmasa bile fonksiyonun o noktada limiti olabilir. Limitinin olması için fonksiyonun x değişkeninin a noktasına sağdan ve soldan yaklaşmalarındaki bulunan limit değerlerinin birbirine eşit olması gerekir. Kısaca fonksiyonun bir noktadaki sağ ve sol limitleri eşitse bu noktada limiti vardır aksi halde o noktada limit yoktur.  

Limitle ilgili bazı konu başlıklarının ayrıntılarına ulaşmak isterseniz aşağıdaki bağlantıları kullanabilirsiniz.

Aşağıdaki Yazılar İlginizi Çekebilir!!!