Birim çember üzerinden gösterilen en temel trigonometrik özdeşlik sin²x+cos²x=1 farklı bir bakış açısıyla çemberdeki açılar yardımıyla da gösterilebilinir. Aynı yayı gören çevre açıların ölçüleri birbirine eşittir. Buna göre Şekildeki sarı renkle gösterilen yayı gören açıların ölçüleri birbirine eşittir. Bu eşit ölçülü açıların tanjant değerleri yazılıp birbirine eşitlendiğinde trigonometrinin en temel özdeşliği olan sin²x+cos²x=1 özdeşliği elde edilmiş olur.
Net Fikir » trigonometri formülleri
sin²x+cos²x=1 özdeşliği ispatı
Tanjant Teoremi ve İspatı
Bir ABC üçgeninde iç açılar; A, B, ve C olmak üzere bunlardan B ve C açıları ve bunlara ait kenar uzunlukları verildiğinde b>c olmak üzere kenar uzunlukları ve açılar arasında taanjant teoremi uygulanır. Buna göre kenarların farkının kenarların toplamına oranı, bu kenarların ait olduğu açıların farkının yarısının tanjant değeri ile bu açıların toplamlarının yarısının tanjant değerine bölümü aynı oranı verir.
Üçgende Trigonometrik Dönüşüm Formülleri
Daha önceki yazılarımızda trigonometrik fonksiyonlarda dönüşüm ve ters dönüşüm formüllerini verip bunların ispatlarını da açıklamıştık. Bu formüllere bağlı olarak çeşitli teoremler üretilmiştir. Bunlara örnek olarak; üçgen uygulamalarından iki güzel örnek verilebilir. (Bknz. Dönüşüm Formülleri)
**Bir ABC üçgeninde üçgenin iç açıları arasında trigonometrik dönüşüm formüllerinin uygulaması görülebilir. Aşağıda buna bağlı iki farklı teorem verilmiştir, ispatlarını inceleyebilirsiniz.
Aynı teoremi verilen ABC üçgeninin iç açılarının cosinüs değerlerine de uygularsak farklı bir sonuçla karşılaşırız. Aşağıda teorem ve ispatı birlikte verilmiştir.
a.sinx+b.cosx en büyük en küçük değeri
f(x)=a.sinx+b.cosx şeklinde verilen bir fonksiyonun en küçük veya en büyük değeri bulunurken klasik [-1,1] kapalı aralığı kavramı kullanılamaz. Çünkü burada her iki fonksiyona da ait açı değerleri aynıdır. Fonksiyon f(x)=a.sinx+b.cosy şeklinde iki farklı açıya sahip fonksiyonların toplamı şeklinde verilmiş olsaydı o zaman klasik [-1,1] kapalı aralığı kavramı kullanılabilirdi.
f(x)=a.sinx+b.cosy şeklinde verilen bir fonksiyonun en küçük değeri (-a)+(-b)= -(a+b) olurken en büyük değeri de a(1)+b(1)=a+b olur.
f(x)=a.sinx+b.cosx şeklinde verilen bir fonksiyonun en küçük ve en büyük değerini aşağıdaki gösterildiği gibi bulabiliriz.





