Bazı kitaplarda kullanılan trigonometri formülleri ezberleme için hazırlanmış zihin haritalarını anlamak ve bunu zihinsel süreçlerle bellemek daha zor olabilmektedir. Bu nedenle kendinize uygun kodlamayı kendiniz hazırlayarak öğrenmeli veya en azından formüllerin nasıl çıkarıldığını yani ispatlarını bilmelisiniz. Unutmayın ki ezberlediğiniz şey ne olursa olsun tekrar edilmediği müddetçe unutulmaya mahkumdur, fakat formülün nasıl çıkarıldığını bilirseniz kendi kendinize formülü rahatlıkla biraz zaman alarak tekrar bulabilirsiniz.
Net Fikir » trigonometrik fonksiyonlar » Dönüşüm Formülleri ve İspatları
Dönüşüm Formülleri ve İspatları
Etiketler :
ispat
matematik
matematik formülleri
tanjant fonksiyonu
teorem ispatları
trigonometri
trigonometrik fonksiyonlar
Dönüşüm formülleri trigonometride kullanılan, toplam durumundaki iki trigonometrik ifadeyi çarpım haline getirmeye yarar. Bu formüllerinin kullanım amacı, bazı özel durumlarda sadeleştirmeye imkan vermesi açısından işlem kolaylığı sağlamasıdır. Dönüşüm formüllerinin ispatları yapılırken toplam ve fark formüllerinden yararlanılır. Aşağıda da gösterildiği gibi dönüşüm formülleri; iki açının trigonometrik oranlarının toplamı biçiminde verilen ifadeleri, iki ifadenin çarpımı biçiminde yazmak için kullanılır. Bu formül sayesinde toplam biçiminde verilen ifadeler, çarpım şekline dönüştürülerek kendi aralarında sadeleştirme işlemleri yapılabilir.Bu formüllerin ezberlenmesi için toplam ve fark formüllerinin ezberlenmesi yeterli olacaktır. Formüllerin ezbere bilinmesinden ziyade, öğrenilmiş bir formülün nerede nasıl kullanılacağının bilinmesi matematik problemlerinin çözümünde daha önemli bir yere sahiptir.
Burada yer alan dönüşüm formüllerinin, trigonometrik toplam ve fark formülleri yardımıyla nasıl ortaya çıktığını göstermeye çalışalım. Benzer şekilde tanjant ve cotanjant dönüşüm formülleri de ispatlanabilir.
Bu formülleri kolay biçimde ezberlemek için zihin haritanızda kendinize uygun kodlamalar yapabilirsiniz. Örneğin sık kullanılan kodlamalardan birine göre; TAC - FFS tekerlemesi kullanılabilir. (TAC: Toplamsa Aynısı al Cosla bitir. FFS: Farksa farklısını al Sinle bitir.)
>>>TAC:Toplamsa ifadenin aynısı alınır, cosla bitirilir.
Örnek: cosx+cosy= 2. cos (x+y)/2 . cos (x-y)/2
Örnekte de görüldüğü gibi toplam olduğu için ifadenin aynısı alınmış ve cos ile bitirilmiştir.Yani cos aynısı alındı ve cosla bitti. burada dikkat edilmesi gereken nokta her zaman x+y önce daha sonra x-y gelecektir.
>>>FFS: Farksa farklısını al Sinle bitir.
Örnek: sinx-siny= 2. cos (x+y)/2 . sin (x-y)/2
Örnekte de görüldüğü gibi fark işlemi olduğu için ifadenin farklısı alınmış ve sin ile bitirilmiştir.Yani cos ve sin olarak farklısı alındı ve sinle bitti. Burada dikkat edilmesi gereken nokta her zaman x+y önce daha sonra x-y gelecektir.
![](https://lh3.googleusercontent.com/-L6sZ7l0x9sU/WGvRonbl2sI/AAAAAAAAHGY/HsxTt1kVzTYD4k82FiQOKzdAbT1kckDUQCLcB/h120/icon18_edit_allbkg.gif)
Takip et: @kpancar |
|
![]() |
![blogger eklentileri-blogger temaları blogger eklentileri-blogger temaları](https://lh6.googleusercontent.com/-W1jc6RrtllI/VNUg4TP7ygI/AAAAAAAAEd8/25BhU0R8LEs/w140-h140-p/unlem.png)
Matematik Konularından Seçmeler
matematik
(214)
geometri
(124)
üçgen
(49)
ÖSYM Sınavları
(46)
trigonometri
(38)
çember
(30)
fonksiyon
(28)
sayılar
(26)
alan formülleri
(25)
türev
(22)
analitik geometri
(19)
denklem
(18)
dörtgenler
(17)
limit
(16)
belirli integral
(13)
katı cisimler
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(4)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)
En Çok Okunan Yazılar
-
ÖSYM'nin 15/06/2019 Tarihinde gerçekleştirdiği TYT matematik sınavı, farklı tarzda ayırt edici sorular içermekle birlikte, 2018 yılı TY...
-
Çocukluğumuzda mutlaka uçurtma yapmayı denemiş veya satın alınan bir uçurtmayı uçurmak için yoğun çaba sarf etmişizdir. Hazır olarak alınanl...
-
Bu yazıda Esma-ül Hüsna hakkında kısaca bilgi verildikten sonra Ebced hesabı ile arasındaki ilişkiyi açıklayıp bütün 99 ismin ebced değerle...
-
Ehl-i Sünnet itikâdını, nazım (şiir) olarak anlatan ünlü ve önemli eserlerden biri; kuşkusuz Emâlî kasidesidir. "Bed'ül Emali...
-
Herhangi bir dörtgenin alanı köşegen uzunlukları ile köşegenlerin arasında yer alan açının sinüsünün çarpımının yarısı ile hesaplanır. Bura...
-
Köşe koordinatları bilinen üçgenin alanını bulmak için, vektör bileşenlerin determinant kuralından yararlanılır. Determinantta SARRUS Kuralı...
-
Geçmişten günümüze kadar matematikte emek sarfetmiş bilim insanlarından bazılarını, bir tarih şeridi halinde görmek istersek, aşağıdaki gib...
"Bazı kitaplarda kullanılan trigonometri formülleri ezberleme için hazırlanmış zihin haritalarını anlamak ve bunu zihinsel süreçlerle bellemek daha zor olabilmektedir. Bu nedenle kendinize uygun kodlamayı kendiniz hazırlayarak öğrenmeli veya en azından formüllerin nasıl çıkarıldığını yani ispatlarını bilmelisiniz. Unutmayın ki ezberlediğiniz şey ne olursa olsun tekrar edilmediği müddetçe unutulmaya mahkumdur, fakat formülün nasıl çıkarıldığını bilirseniz kendi kendinize formülü rahatlıkla biraz zaman alarak tekrar bulabilirsiniz."
YanıtlaSilcümlenize katılmamak mümkün değil hocam, emeğinize sağlık...
İyi,açık ve de anlaşılır teşekkürler
YanıtlaSilcota-cotb=sin(b-a)/(sina*sinb) olur
YanıtlaSilYazdığınız bu formül ile cota-cotb=-sin(a-b)/(sina*sinb) formülü aynıdır. Bunun yerine tanjant formülünü bilmeniz daha kolay kullanım sağlar.
SilGerçekten yararlı olmuş
YanıtlaSil