Bazı kitaplarda kullanılan trigonometri formülleri ezberleme için hazırlanmış zihin haritalarını anlamak ve bunu zihinsel süreçlerle bellemek daha zor olabilmektedir. Bu nedenle kendinize uygun kodlamayı kendiniz hazırlayarak öğrenmeli veya en azından formüllerin nasıl çıkarıldığını yani ispatlarını bilmelisiniz. Unutmayın ki ezberlediğiniz şey ne olursa olsun tekrar edilmediği müddetçe unutulmaya mahkumdur, fakat formülün nasıl çıkarıldığını bilirseniz kendi kendinize formülü rahatlıkla biraz zaman alarak tekrar bulabilirsiniz.
Net Fikir » trigonometrik fonksiyonlar » Dönüşüm Formülleri ve İspatları
Dönüşüm Formülleri ve İspatları
Etiketler :
ispat
matematik
matematik formülleri
tanjant fonksiyonu
teorem ispatları
trigonometri
trigonometrik fonksiyonlar
Dönüşüm formülleri trigonometride kullanılan, toplam durumundaki iki trigonometrik ifadeyi çarpım haline getirmeye yarar. Bu formüllerinin kullanım amacı, bazı özel durumlarda sadeleştirmeye imkan vermesi açısından işlem kolaylığı sağlamasıdır. Dönüşüm formüllerinin ispatları yapılırken toplam ve fark formüllerinden yararlanılır. Aşağıda da gösterildiği gibi dönüşüm formülleri; iki açının trigonometrik oranlarının toplamı biçiminde verilen ifadeleri, iki ifadenin çarpımı biçiminde yazmak için kullanılır. Bu formül sayesinde toplam biçiminde verilen ifadeler, çarpım şekline dönüştürülerek kendi aralarında sadeleştirme işlemleri yapılabilir.Bu formüllerin ezberlenmesi için toplam ve fark formüllerinin ezberlenmesi yeterli olacaktır. Formüllerin ezbere bilinmesinden ziyade, öğrenilmiş bir formülün nerede nasıl kullanılacağının bilinmesi matematik problemlerinin çözümünde daha önemli bir yere sahiptir.
Burada yer alan dönüşüm formüllerinin, trigonometrik toplam ve fark formülleri yardımıyla nasıl ortaya çıktığını göstermeye çalışalım. Benzer şekilde tanjant ve cotanjant dönüşüm formülleri de ispatlanabilir.
Bu formülleri kolay biçimde ezberlemek için zihin haritanızda kendinize uygun kodlamalar yapabilirsiniz. Örneğin sık kullanılan kodlamalardan birine göre; TAC - FFS tekerlemesi kullanılabilir. (TAC: Toplamsa Aynısı al Cosla bitir. FFS: Farksa farklısını al Sinle bitir.)
>>>TAC:Toplamsa ifadenin aynısı alınır, cosla bitirilir.
Örnek: cosx+cosy= 2. cos (x+y)/2 . cos (x-y)/2
Örnekte de görüldüğü gibi toplam olduğu için ifadenin aynısı alınmış ve cos ile bitirilmiştir.Yani cos aynısı alındı ve cosla bitti. burada dikkat edilmesi gereken nokta her zaman x+y önce daha sonra x-y gelecektir.
>>>FFS: Farksa farklısını al Sinle bitir.
Örnek: sinx-siny= 2. cos (x+y)/2 . sin (x-y)/2
Örnekte de görüldüğü gibi fark işlemi olduğu için ifadenin farklısı alınmış ve sin ile bitirilmiştir.Yani cos ve sin olarak farklısı alındı ve sinle bitti. Burada dikkat edilmesi gereken nokta her zaman x+y önce daha sonra x-y gelecektir.

Bu yazıyı aşağıdaki bağlantılar yardımıyla sosyal ağlarda paylaşabilirsiniz. E-Posta ile arkadaşlarınıza yollayabilirsiniz...
|
Takip et: @kpancar |

Aşağıdaki Yazılar İlginizi Çekebilir!!!
08.01.2010 - 0 YorumRönesans sonrası Avrupa'da, Kopernik'le başlayan, Kepler, Galileo ve Newton'la 17. yüzyılda doruğuna ulaşan bilimsel devrim, kökleri Helenistik döneme uzanan bir olaydır. O dönemin seçkin bilginlerinden Aristarkus, güneş-merkezli astronomi…
02.02.2014 - 0 Yorum 10. yüzyılda yaşıyan ve tüm dünyaya isminin (El Harezmi – Al Khrawarizmi) Latince telaffuzunu “algoritma” olarak zikrettiren bu Müslüman Türk alimi, cebir matematiğinin de kurucusudur. Zaten cebir kelimesi de Harezmi’nin (El Kitab’ül…
07.05.2014 - 0 Yorum "İnsanın hayatı, tat ile acının güzergâhıdır. İnsan ruhu; acıdan gocunur, tattan hoşlanır. Şimdiki zamandan geleceğe, insan faaliyetlerini düzenleyen şey,…
19.04.2012 - 2 Yorum Latincede Albategnius,Albategni-Albatenius olarak ismi geçen ve tam adı "Ebu Abdullah Muhammed bin Cabir bin Sinan er-Rekki es-Sabi el-Battani" (858, Harran - 929) olan; El Battani; Harran'da doğmuştur. Önemli derecede astronomi çalışmaları…
15.09.2013 - 0 Yorum Pompei İtalya' nin Campania bölgesinde, Napoli kenti yakınlarında bulunan bir şehirdir. Pompeii antik şehri kalıntıları ile ünlü olan şehrin 2010 yılı nüfusu 25.000 civarındadır.Pompei bu özellikleri yanında tarihteki büyük felaketiyle hatırlanan…
03.02.2019 - 0 YorumRivayet odur ki, Sultan Alaaddin zamanında üç Hristiyan papaz, Anadolu’yu dolaşarak halkın kafasını karıştırmayı kendilerine görev edinmişler... Gittikleri yerlerde o yörenin en âlim kişisini bulup, papazlardan her biri o alim kişiye cevabı…
29.04.2013 - 12 Yorum Bu yazıda Esma-ül Hüsna hakkında kısaca bilgi verildikten sonra Ebced hesabı ile arasındaki ilişkiyi açıklayıp bütün 99 ismin ebced değerleri ve manaları aşağıda ayrıca verilecektir. (Bkz: Ebced Hesabı)İsmin çoğulu olan esmâ ile “güzel, en güzel”…
19.02.2025 - 0 YorumGraf teorisi veya çizge kuramı, grafları inceleyen matematik dalıdır. Graf, düğümler ve bu düğümleri birbirine bağlayan kenarlardan oluşan bir tür ağ yapısıdır. Bir graf veya çizge, düğümlerden (köşeler) ve bu düğümleri birbirine bağlayan…
Matematik Konularından Seçmeler
matematik
(260)
geometri
(124)
ÖSYM Sınavları
(50)
üçgen
(49)
trigonometri
(39)
çember
(31)
sayılar
(30)
fonksiyon
(28)
alan formülleri
(25)
türev
(23)
analitik geometri
(19)
denklem
(18)
dörtgenler
(18)
limit
(16)
belirli integral
(13)
katı cisimler
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(4)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)
"Bazı kitaplarda kullanılan trigonometri formülleri ezberleme için hazırlanmış zihin haritalarını anlamak ve bunu zihinsel süreçlerle bellemek daha zor olabilmektedir. Bu nedenle kendinize uygun kodlamayı kendiniz hazırlayarak öğrenmeli veya en azından formüllerin nasıl çıkarıldığını yani ispatlarını bilmelisiniz. Unutmayın ki ezberlediğiniz şey ne olursa olsun tekrar edilmediği müddetçe unutulmaya mahkumdur, fakat formülün nasıl çıkarıldığını bilirseniz kendi kendinize formülü rahatlıkla biraz zaman alarak tekrar bulabilirsiniz."
YanıtlaSilcümlenize katılmamak mümkün değil hocam, emeğinize sağlık...
İyi,açık ve de anlaşılır teşekkürler
YanıtlaSilcota-cotb=sin(b-a)/(sina*sinb) olur
YanıtlaSilYazdığınız bu formül ile cota-cotb=-sin(a-b)/(sina*sinb) formülü aynıdır. Bunun yerine tanjant formülünü bilmeniz daha kolay kullanım sağlar.
SilGerçekten yararlı olmuş
YanıtlaSil