Net Fikir » sayılar » Altın Oranın Görüldüğü ve Kullanıldığı Yerler
Altın Oranın Görüldüğü ve Kullanıldığı Yerler
Etiketler :
altın oran
fibonacci dizisi
matematik
sayılar
8) Picasso: Picasso da Leonardo da Vinci gibi ünlü bir ressamdır. Ve resimlerinde bu oranı kullanmıştır.
Altın oran, matematik ve sanatta, bir bütünün parçaları arasında gözlemlenen, uyum açısından en yetkin boyutları verdiği sanılan geometrik ve sayısal bir oran bağıntısıdır.
Eski Mısırlılar ve Yunanlar tarafından keşfedilmiş, mimaride ve sanatta kullanılmıştır. Fibonacci dizisinin yaklaşık limit değeri
olarak gösterilmiştir. Bir doğru parçasının |AB| Altın Oran'a uygun biçimde iki parçaya
bölünmesi gerektiğinde, bu doğru öyle bir noktadan (C) bölünmelidir ki;
küçük parçanın |AC| büyük parçaya |CB| oranı, büyük parçanın |CB| bütün
doğruya |AB| oranına eşit olsun.
Altın Oranı şu şekilde ifade edebiliriz;
CB / AC = AB / CB = 1,618... sayısını verir. Daha ayrıntılı olarak Altın Oran, pi (π) gibi irrasyonel bir sayıdır ve ondalık sistemde yazılışı; 1,618033988749894...'tür. (Altın oran hakkında daha ayrıntılı bilgi elde etmek için bağlantıya tıklayabilirsiniz.(Bkz. Altın Oran)
Altın oranın görülebildiği bazı yerler:
1) Ayçiçeği: Ayçiçeği'nin merkezinden dışarıya doğru sağdan sola ve soldan sağa doğru tane sayılarının birbirine oranı altın oranı verir.
2) Papatya Çiçeği: Papatya Çiçeğinde de ayçiçeğinde olduğu gibi bir altın oran mevcuttur.
3) İnsan Kafası: Bildiğiniz gibi her insanın kafasında bir ya da birden fazla saçların çıktığı düğüm noktası denilen bir nokta vardır. İşte bu noktadan çıkan saçlar doğrusal yani dik değil, bir spiral, bir eğri yaparak çıkmaktadır. İşte bu spiralin ya da eğrinin tanjantı yani eğrilik açısı bize altın oranı verecektir.
4) İnsan Vücudu: İnsan Vücudunda Altın Oran'ın nerelerde görüldüğüne bakalım: a) Kollar: İnsan vücudunun bir parçası olan kolları dirsek iki bölüme ayırır.(Büyük(üst) bölüm ve küçük(alt) bölüm olarak). Kolumuzun üst bölümünün alt bölüme oranı altın oranı vereceği gibi, kolumuzun tamamının üst bölüme oranı yine altın oranı verir.b) Parmaklar: Ellerimizdeki parmaklarla altın oranın ne alakası var diyebilirsiniz. İşte size alaka... Parmaklarınızın üst boğumunun alt boğuma oranı altın oranı vereceği gibi, parmağınızın tamamının üst boğuma oranı yine altın oranı verir.
5) Tavşan: İnsan kafasında olduğu gibi tavşanda da aynı özellik vardır.
6) Mısır Piramitleri: İşte size Altın Oran'ın en eski örneklerinden biri... Şimdi ne alaka Altın Oran ve Milattan Önce yapılan Mısır Piramitleri? Alaka şu; Her bir piramidin tabanının yüksekliğine oranı evet yine altın oranı veriyor.
7) Leonardo da Vinci: Bilindiği gibi Leonardo da Vinci Rönesans devri ünlü ressamlarındandır. Şimdi bu ünlü ressamın çizmiş olduğu tabloları inceleyelim.a) Mona Lisa: Mona Lisa'nın başının etrafına bir dikdörtgen çizdiğinizde ortaya çıkan dört kenar bir altın dikdörtgendir. Bu dikdörtgeni, göz hizasında çizeceğiniz bir çizgiyle ikiye ayırdığınızda yine bir altın oran elde edersiniz. Resmin boyutları da altın oran oluşturmaktadır.b) Aziz Jerome: Yine tablonun boyunun enine oranı bize altın oranı verir.
9) Çam Kozalağı: Çam kozalağındaki taneler kozalağın altındaki sabit bir noktadan kozalağın tepesindeki başka bir sabit noktaya doğru spiraller (eğriler) oluşturarak çıkarlar. İşte bu eğrinin eğrilik açısı altın orandır.
10) Deniz Kabuğu: Denize çoğumuz gitmişizdir. Deniz kabuklarına dikkat edenimiz, belki de koleksiyon yapanımız vardır. İşte deniz kabuğunun yapısı incelendiğinde bir eğrilik tespit edilmiş ve bu eğriliğin tanjantının altın oran olduğu görülmüştür.
11) Tütün Bitkisi: Tütün Bitkisinin yapraklarının dizilişinde bir eğrilik söz konusudur. Bu eğriliğin tanjantı altın orandır.
13) Salyangoz: Salyangozun Kabuğu bir düzleme aktarılırsa, bu düzlem bir dikdörtgen oluşturur. İşte bu dikdörtgenin boyunun enine oranı yine altın oranı verir.
14)Elektrik Devresi: Altın Oran sadece Matematik ve kainatta değil, Fizik’te de kullanılıyor. Verilen n tane dirençten maximum verim elde etmek için bir paralel bağlama yapılması gerekir. Bu durumda Eşdeğer Direnç, yani Reş=altın oran olur.
15) Mimar Sinan: Mimar Sinan’ın da bir çok eserinde bu altın oran görülmektedir. Mesela Süleymaniye ve Selimiye Camileri’nin minarelerinde bu oran kullanılmıştır.
16) Arı Kovanları: Arı kovanlarında yaşayan dişi arıların sayısının erkek arıların sayısına bölündüğünde hep aynı sayı elde edilir. Yani 1.618...
17) Sanatta: Michelangelo, Albrecht Dürer, Da Vinci ve digerlerinin sanat eserlerinde, Altın Orana bilincli ve dikkatli bir baglılık sözkonusudur. Beethoven in Beşinci Senfonisinde, Bartok’un, Debussy’nin ve Shubert’in eserlerinde de gozükür. Stradivarius’un bile ünlü kemanlarındaki F deliklerinin yerlerini belirlemekte altın oranı kullandıgı bilinmektedir.
İnsan gözünde de altın oran mevcuttur. İnsan gözünün altın orana bu kadar yakın olmasının, estetik açıdan sürekli olarak altın orana uygun şekil ve yapıları tercih etmesinin bir nedenini, yaşadığı çevre olan doğada hemen her an altın oranla karşı karşıya olmasının yanı sıra, kendi vücudunun hemen her noktasında altın orana sahip olmasında arayabiliriz. Aşağıdaki oranlarda insan vücudunda altın oranın örneklerini görebilirsiniz.
İdeal ölçülere sahip bir insan vücudunda sayısız altın oran örnekleri görmek mümkündür:
Tam Boy / Bacak boyu
Beden Boyu / Kolaltı beden boyu
(Parmak ucu - Omuz) boyu / ( Parmak ucu - Dirsek ) boyu
( Göbek - Omuz ) boyu / ( Göbek - Bel ) boyu
İdeal ölçülere sahip bir insan yüzünde de sayısız altın oran örnekleri görmek mümkündür:
Yüz yüksekliği / Yüz genişliği
Alın genişliği / Burun boynu
Yüz genişliği / Gözbebekleri arası
Gözbebekleri arası / Ağız genişliği
Ağız genişliği / Burun genişliği
Takip et: @kpancar |
|
''Altın Oranın Görüldüğü ve Kullanıldığı Yerler'' Bu Blog yazısı;
Kasım 19, 2008 tarihinde altın oran, fibonacci dizisi, matematik, sayılar kategori başlıklarında eklenmiş olup Muallim tarafından yayınlanmıştır. Ayrıca henüz yorum yapılmamış bir yazıdır. Yazımızda hatalı bir içerik olduğunu düşünüyorsanız lütfen 'kpancar@yahoo.com' mail adresimize bildiriniz. Dualarınızı bekleriz.
Matematik Konularından Seçmeler
matematik
(209)
geometri
(124)
üçgen
(49)
ÖSYM Sınavları
(46)
trigonometri
(38)
çember
(30)
fonksiyon
(28)
sayılar
(26)
alan formülleri
(25)
türev
(22)
analitik geometri
(19)
denklem
(18)
dörtgenler
(17)
limit
(16)
belirli integral
(13)
katı cisimler
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(4)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)
En Çok Okunan Yazılar
-
x, bir gerçek (reel) sayı olmak üzere, x'ten büyük olmayan en büyük tamsayıya x'in tam değeri denir. Bunu ifade eden fonksiyona tam ...
-
ÖSYM'nin 15/06/2019 Tarihinde gerçekleştirdiği TYT matematik sınavı, farklı tarzda ayırt edici sorular içermekle birlikte, 2018 yılı TY...
-
Bu yazıda Esma-ül Hüsna hakkında kısaca bilgi verildikten sonra Ebced hesabı ile arasındaki ilişkiyi açıklayıp bütün 99 ismin ebced değerle...
-
Koordinat düzleminde çizilen birim çember için çember üzerinde alınan rastgele bir L noktasından x ve y eksenlerini kesecek biçimde bir doğ...
-
Ehl-i Sünnet itikâdını, nazım (şiir) olarak anlatan ünlü ve önemli eserlerden biri; kuşkusuz Emâlî kasidesidir. "Bed'ül Emali&quo...
-
Matematiğin en temel ve en önemli işlerinden biri, teoremleri ispatlamaktır. Varlık bildiren teoremler hariç, bir teoremin doğru olduğunu g...
-
Bir fonksiyonun grafiği çizildiğinde bu grafikte sonsuza giden bir kolu varsa, bu kol üzerindeki rastgele bir nokta alındığında bu nokta so...
0 yorum:
Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."
İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...