Müziğin Temelindeki Matematik

Etiketler :
"Tarih boyunca pek çok matematikçi müzikle ilgilenmiştir. Bazılarımızın aklına 'Acaba pek çok müzisyen de matematikle ilgilenmiş midir?' gibi bir soru takılabilir. Kuşkusuz ilgilenen müzisyenler vardır ancak bir karşılaştırma yapılırsa matematikçiler çok daha öndedirler. "Müzik, iki bin yıl öncesinde matematiksel bir bilim olarak ele alınmıştır. Hatta yakın zamanlarda bile Ozanam, Saverien ve Hutton'un matematik sözlüklerinde müzik ile ilgili makaleler vardır. Bu yüzden matematikçilerin müzik ile ilgili yazmaları şaşırtıcı gelmemelidir" (Archibald,1923: 2). Asıl konumuza dönecek olursak, müzik ve matematik arasındaki ilişkinin incelenmesi eski Yunanlılara kadar uzanır. Eski Yunan' da müzik, matematiğin 4 ana dalından biri olarak kabul edilmiştir. Pythagoras (M.Ö. 586) okulunun (Quadrivium) programına göre Müzik; Aritmetik, Geometri ve Astronomi ile aynı düzeyde kabul görmüştür. Bir telin değişik boyları ile değişik sesler elde edildiğini ortaya çıkartan Pyhagoras, M.Ö. 6. yüzyılda yaşamıştır ve bugün kullanılmakta olan müzikal dizinin temelini oluşturması açısından oldukça önemli bir iş yapmıştır. Konfiçyüs (M.Ö. 551-478) belirli modların insanlar üzerine etkisini incelemiştir. Platon ( M.Ö. 428/7-348/7) müziği etiğin bir parçası olarak kabul etmektedir.
Platon, karışıklıktan kaçınır ve basitliği savunur. Karışıklığın düzensizlik ve depresyona yol açacağını savunur. Platon, insan karakteri ile müzik arasında bir bağlantı bulmuştur. Pythagoras, 12 birimlik bir teli ikiye bölmüş ve oktavı elde etmiştir. Elde edilen 6 birimlik uzunluk ( telin ½ si), 12 birimlik uzunluğun bir oktav tizidir. Pythagoras 8 birimlik uzunluk ile (telin 2/3 ü) 5 li aralığı, 9 birimlik uzunluk ile (telin ¾ ü) 4 lü aralığı bulmuştur. Antik devirde dört sesin bir arada duyulması prensibi "tetrakord" olarak adlandırılmakta ve müzik teorisinin temel kuralı olarak sayılmaktadır. Böylelikle tetrakord, 6,8,9 ve 12 ile elde edilmiştir ve ileride değineceğimiz gibi bu sayılar bize "altın oran" konusunda da oldukça ilginç örtüşmeler sunmaktadır.
Müzikte önemli olan bir başka isim Fibonacci'dir. Leonardo Fibonacci (1175-1240) bir İtalyan matematikçisidir. Matematik biliminde önemli çalışmaları olmuştur. Ancak ençok "tavşan çiftliği" problemi ile meşhur olmuştur. Probleme göre; bir çift tavşan var ve bir ay geçtikten sonra her yeni çift tavşan bir çift tavşan doğuruyor. Her yeni doğan çift ikinci ay birer çift tavşan doğurur ve bu böylece devam eder. Kaç ay sonra kaç çift tavşan olur. Sonuçta karşımıza şu şekilde bir seri çıkar;
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987...
Seriye bakacak olursak, son iki sayının toplamı bize bir sonraki sayıyı vermektedir. Burada bizim için önemli olan orandır. Dikkat edilecek olursa iki ardışık sayının oranı (küçük sayının büyük sayıya oranı) aynı sayıya yakınsamaktadır. 0, 61803398......Bu oran resimde, mimaride, ve müzikte çeşitli dönemlerde "altın oran" veya "mükemmel oran" olarak kullanılmıştır. Altın oranı geometrik olarak ifade edecek olursak, ikiye bölünmüş bir [AB] doğru parçası düşünelim. Tüm doğru parçasının büyük parçaya oranının, büyük parçanın küçük parçaya oranına eşitliği bize altın oranı vermektedir.

Pythagoras aralıklarından bahsederken tetrakord u oluşturan 6, 8, 9, ve 12 birimlik tellerden bahsetmiştik. Şimdi bu aralıkları altın orana uygulayacak olursak,(12-8) : (8-6) = 12: 6 oranının altın oran olduğunu görürüz. Bu, oldukça ilginç bir örtüşmedir.Müzikte yapılan çeşitli çalışmalarda altın oranın kompozisyonlarda melodik, ritmik veya dinamik olarak belirli bir orana göre oluşturulduğu görülmüştür. Mozart'ında altın oranı kullanıp kullanmadığına dair çeşitli görüşler vardır. John F.Putz'a göre Mozart'ın eserleri bir dahi işidir ve sayılarla oynamayı seven birisinin işidir. O'na göre Mozart altın oranı biliyordu ve eserlerinde kullanmıştır (May, 1996). 19. yy. da J. Fourier, müzikal serinin niteliğini incelemiştir. "Fourier, müzik aleti ve insandan çıkan bütün müzikal seslerin matematiksel ifadeler ile tanımlanabileceğini ve bununda periyodik sinüs fonksiyonları ile olabileceğini ispatlamıştır."(Matematik Dünyası, 1995:7) Ünlü Matematikçi Leibniz, "Müzik ruhun gizli bir matematiksel problemidir" demiştir."
Yrd. Doç. Dr. Ece KARŞAL

Matematik ve Müzik ilişkisine dair merak ettiğiniz konularda bilgi almak için bu yazının tamamını okumanızı tavsiye ederim. Yazının Tüm metni için tıklayınız.

0 yorum:

Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."

İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...

Aşağıdaki Yazılar İlginizi Çekebilir!!!

  • Tori Large, Şekilli Matematik Sözlüğü19.12.2014 - 0 Yorum Matematik terimleri hakkında genel bir bilgi akışı sağlayan, özellikle ilköğretim ve başlangıç kısmı olarak ortaöğretim öğrencileri için çok daha fazla yararı olabileceğini söyleyeceğim bu kitapta, matematiksel manada doyurucu bilgilere…
  • Üçgende Açılar07.04.2020 - 0 YorumÜçgen: aynı düzlem üzerinde bulunan ve doğrusal olmayan üç farklı noktayı, ardışık olarak birleştiren doğru parçalarının oluşturduğu kapalı, geometrik şekle üçgen (müselles) adı verilir....Açılarına göre üçgenler...1) DAR AÇILI ÜÇGEN. Üç açısı…
  • Cemaatler ve Namaz 08.05.2012 - 0 Yorum Namaz; İslam dininin olmazsa olmaz şartlarından biridir. İslamın beş şartını sayarken Kelime-i şehadet ile iman ettikten sonra sayılan ikinci ve en temel şart namazdır. Namaz ibadeti; peygamber efendimizin (s.a.v) hadis-i şeriflerinde dinin direği,…
  • Richard Dunlap, Altın Oran ve Fibonacci Sayıları23.08.2014 - 0 Yorum Altın oran ve Fibonacci sayılarının, bitkilerin büyümesinin ve bazı katıların kristalografik yapısının incelenmesinden, veri tabanlarında arama yapmak için yazılan bilgisayar algoritmalarının geliştirilmesine kadar çok geniş bir uygulama alanı var.…
  • Dörtgenlerin Özelliklerinin Sınıflandırılması30.06.2019 - 0 YorumDörtgenlerin ortak özellikleri olduğu gibi birbirinden farklı özellikleri de mevcuttur. Bütün bu özellikleri bir tabloda birlikte göstermek dörtgenlerin sınıflandırılması açısından bizlere kolaylık sağlayacaktır. Aşağıda özel dörtgenler (yamuk,…
  • Matematik ve Müzik21.08.2014 - 0 Yorum Yıllar önce üniversitede matematik eğitimi alırken müzik bölümünde yüksek lisans yapmakta olan bir öğrenci gelerek biz matematik sınıfı öğrencilerine bir anket çalışması düzenlemişti. Ankette yer alan sorular eşliğinde matematikçilerin müzikle…
  • John Forbes Nash22.09.2011 - 0 Yorum John Forbes Nash, 13 Haziran 1928’de Batı Virginia, Amerika’da dünyaya geldi. Oğluyla aynı adı taşıyan baba John Nash, Teksas A&M Üniversitesi mezunu bir elektrik mühendisi, annesi Margaret Virginia Martin ise bir Latince ve İngilizce…
  • Kaza Namazı09.07.2010 - 0 Yorum Eda ile Kazanın Farkları ve Kaza Namazları      281- Bir namazı vaktinde kılmaya "eda" denir. Vaktinden sonra kılmaya da "kaza" denir. Vaktinde kılınan veya kılınacak olan bir namaza "vaktiyye" veya "salât-ı hazıra" denir.…