
Net Fikir » Tüm Yazılar
Noktanın Doğruya Uzaklığı
Bir noktanın doğruya olan en kısa uzaklığı
dik olan uzaklıktır. Bu uzaklık da aşağıda gösterildiği şekilde noktanın
doğruya uzaklık formülü yardımıyla bulunur.

Bir Doğru Parçasını İçten/Dıştan Bölen Nokta
Bir doğru parçasını belli bir oranda içten veya dıştan noktanın koordinatları bulunurken o noktalar arasındaki artış miktarından yola çıkarak verilen orana göre, istenen noktanın koordinatları bulunur.
Noktanın bir doğru parçasını içten veya dıştan bölecek şekilde olması aynı kurala dayanır. İki durumda da benzerlik teoreminden yararlanılarak oluşacak üçgenler arasındaki thales bağıntılarından yola çıkılarak ispat yapılır. Burada elde edilen formülün kullanılması zorunlu olmadığı gibi bazı durumlarda kat hesabı yapmaktan daha zor kullanıma sahip olacaktır. En iyi metot verilen orana göre katları yazdıktan sonra koordinatlar arasındaki farklardan yola çıkarak istenen koordinatın bulunması olacaktır.
Formülü kullanmaktan ziyade aşağıda belirtildiği şekilde 2.yolu kullanmak, çok daha kullanışlı ve güzel bir yöntem olacaktır.
Noktanın bir doğru parçasını içten veya dıştan bölecek şekilde olması aynı kurala dayanır. İki durumda da benzerlik teoreminden yararlanılarak oluşacak üçgenler arasındaki thales bağıntılarından yola çıkılarak ispat yapılır. Burada elde edilen formülün kullanılması zorunlu olmadığı gibi bazı durumlarda kat hesabı yapmaktan daha zor kullanıma sahip olacaktır. En iyi metot verilen orana göre katları yazdıktan sonra koordinatlar arasındaki farklardan yola çıkarak istenen koordinatın bulunması olacaktır.
Formülü kullanmaktan ziyade aşağıda belirtildiği şekilde 2.yolu kullanmak, çok daha kullanışlı ve güzel bir yöntem olacaktır.
İçten bölen nokta tam olarak doğru parçasını iki eşit parçaya ayırırsa o zaman bu nokta orta nokta olmuş olur ki bunun koordinatlarını bulmak daha kolay hale gelir. Sınır koordinatlarının toplamının yarısı orta noktanın koordinatlarını verir.
Paralelkenar dikdörtgen ve kare gibi şekillerin köşe koordinatları bulunurken de aynı mantıkla hareket edilir. Bu dörtgenlerin köşegenlerinin kesim noktası orta nokta olduğundan yukarıdaki örnekten yararlanarak; orta noktanın koordinatlarının bulunmasından hareketle, paralelkenar ve dikdörtgenlerin de köşe koordinatları bulunabilir.
Aşağıdaki örnekleri kendiniz çözerek konuyu daha iyi pekiştirebilirsiniz. Cevapları yanlarında verilmiştir. (Doğru parçasının belli bir oranda bölen noktanın koordinatları)
Aşağıdaki örnekleri kendiniz çözerek konuyu daha iyi pekiştirebilirsiniz. Cevapları yanlarında verilmiştir. (Dörtgenlerin köşe noktalarının koordinatlarının bulunması)
İki Nokta Arası Uzaklık ve İspatı
Analitik düzlemde iki nokta arasıuzaklık hesaplaması yapılırken iki noktanıneksenlerde belirlediği yerlerin arasındaki değişim miktarı dikkate alınır ve buna göre pisagor teoreminden uzaklık bulunur. Yani iki farklı noktanın ordinat bileşenleri farkının karesi ile apsis bileşenlerinin farkının karesi alınıp toplandıktan sonra pisagor teoremi gereği karekökü alınarak iki nokta arasındaki uzaklık bulunumuş olur.
Hicret ve Yeni Yılbaşı (1 Muharrem)
Allah Rasulü, Mekke’den
ayrılıp,bir beldeye doğru yol alıyordu. Hurmalıklarla dolu bu yerin neresi
olduğunu tam olarak anlayamamıştı. Bir an Yemame yada Hecer olabileceğini
düşünmüş, fakat yanılmıştı. Zira orası daha sonra Medine ismini alacak olan
Yesrib şehri idi. Bir rüya görmüştü Hz. Peygamber(s.a.v),tam da müşriklerin
baskısı altında bunalan Müslümanların umut ışığı beklediği bir anda…
بِسْمِ اللّهِ الرَّحْمَنِ الرَّحِيمِ
الَّذِينَ آمَنُواْ وَهَاجَرُواْ وَجَاهَدُواْ فِي سَبِيلِ اللّهِ بِأَمْوَالِهِمْ وَأَنفُسِهِمْ أَعْظَمُ دَرَجَةً عِندَ اللّهِ وَأُوْلَئِكَ هُمُ الْفَائِزُونَ
Ayet-i Kerime'de Rabbimiz şöyle
buyuruyor:“İman edip hicret eden ve Allah yolunda mallarıyla canlarıyla cihat
eden kimselerin mertebeleri Allah katında daha üstündür. İşte onlar başarıya
erenlerin ta kendileridir."(1-Tevbe,
9/20)
وَقَالَ النَّبِىُّ عَلَيْهِ الصَّلَاةُ وَ السَّلَامُ :
اَلْمُسْلِمُ مَنْ سَلِمَ الْمُسْلِمُونَ مِنْ لِسَانِهِ وَ يَدِهِ, وَالْمُهَاجِرُ مَنْ هَجَرَ مَا نَهَى اللهُ عَنْهُ

Pi Sayısı ve Tarihçesi
Matematikte cebirsel olmayan herhangi bir reel sayıya aşkın sayı denir. Diğer bir deyişle, katsayıları tamsayı (ya da rasyonel) olan bir polinomun kökü olamayan reel sayılara aşkın sayı denir. Buradan, tüm aşkın sayıların irrasyonel olduğu sonucuna varılabilir. Ancak tüm irrasyonel sayılar aşkın sayı değildir, Pi örneğin irrasyoneldir, ancak bir polinomunun köküdür.
Basit Eşitsizlikler Kavrama Testi
Basit Eşitsizlik kavramını daha iyi anlamak için çeşitli soru tiplerinden derlenerek hazırlanmış kavrama testini istifadenize sunuyoruz.
Sadece basit eşitsizliklerini çözebilme, eşitsizlik kavramının özelliklerini öğrenebilme ve temel kuralları kazandırmak için oluşturulmuş test, her öğrenci seviyesine hitap edecek
şekildeki sorulardan meydana gelmiştir.
Basit Eşitsizlikler Kavrama Testini (2*30dk) 2
ders saati içerisinde etkinlik olarak planlayabilirsiniz. Testi indirmek için tıklayınız...
Denklem Çözme Kavrama Testi
Denklem çözme kavramını daha iyi anlamak için çeşitli kitaplardan derlenerek hazırlanmış
testimizi istifadenize sunuyoruz.
Birinci dereceden denklem çözme, kavramını
kazandırmak için oluşturulmuş test her öğrenci seviyesine hitap edecek
şekilde rahatlıkla yapılabilecek sorulardan meydana gelmiştir.
Denklemler testini, ders ortamında 2
ders saati içinde (2*30dk) etkinlik olarak planlayabilirsiniz. Testi indirmek için tıklayınız...













