Net Fikir » matematik » Fraktal ile örüntü arasındaki farklar
Fraktal ile örüntü arasındaki farklar
Etiketler :
dönüşüm geometrisi
fraktal
fraktal geometri
geometri
matematik
Fraktal; matematikte, çoğunlukla kendine benzeme özelliği gösteren karmaşık geometrik şekillerin ortak adıdır. Fraktallar, klasik, yani Eukleidesçi geometrideki kare , daire , küre gibi basit şekillerden çok farklıdır. Bunlar, doğadaki, Eukleidesçi geometri aracılığıyla tanımlanamayacak pek çok uzamsal açıdan düzensiz olguyu ve düzensiz biçimli tanımlama yeteneğine sahiptir. Fraktal terimi “parçalanmış” yada “kırılmış” anlamına gelen Latince “fractus” sözcüğünden türetilmiştir. İlk olarak 1975’te Polonya asıllı matematikçi Beneoit B. Mandelbrot tarafından ortaya atılan fraktal kavramı, yalnızca matematik değil fiziksel kimya, fizyoloji ve akışkanlar mekaniği gibi değişik alanlar üzerinde önemli etkiler yaratan yeni bir geometri sisteminin doğmasına yol açmıştır
Fraktalların içinde veya üzerinde oluşturulan şekiller birbirinin küçültülmüş veya büyütülmüş şekilleridir. Genellikle küçülme ve büyüme yoluyla oluşturulurlar.
Örüntü, çoğunlukla uzaysal ve geometrik karaktere sahip, iki veya üç boyutlu bir nesne olarak düşünülebilir. Diğer bir ifadeyle örüntü, ilgilenilen varlıkla ilgili gözlenebilir veya ölçülebilir bilgilere verilen isimdir.
Türk Dil Kurumu'nun güncel sözlüğüne göre örüntü olay veya nesnelerin düzenli bir biçimde birbirini takip ederek gelişmesidir. Örnek verecek olursak haftanın günleri bir örüntüdür.Dokunun arasında çizgi, noktacık veya renklerin ritmik tekrarıyla oluşan görünüme denir.
Örüntü, bir nesne ve ya olay kümesindeki elemanların ardışık olarak düzenli bir biçimde birbirlerini takip ederek yenilenmesi olarak da tanımlanabilir. Basit bir örnek olarak sene içerisinde ardışık olarak gelen aylar bir örüntü oluşturur. Örüntü kavramı çok basit bir kavrammış gibi gözüksede yapay zekaya giden yol örüntülerden geçmektedir. Yüz tanıma sistemleri, optik karakter okuyucular, parmak izi tanıma sistemleri, DNA çözümleme sistemlerinde ki algoritmalar hep örüntülerden faydalanılır. İngilizce karşılığı pattern olarak geçmektedir.
Tekerlemeler de esasında birer örüntüdür. Anlamlı veya anlmasız kelimeler belli bir düzen halinde sıra ile yan yana gelerek bir bütün ifade etmektedir.
"Kelkit’ te keklikler Kesmik’ e dadanmışlar. Kelkitliler de Kesmik’ teki kekliklerin etine dadanmışlar. Kelkit’ teki keklikler Kesmik’ e dadanmayaydılar, Kelkitliler de Kesmik’ teki kekliklerin etine dadanmazlardı."
veya
"Bir tarlaya kemeken ekmişler. Bu tarlaya iki kürkü yırtık kel kör kirpi dadanmış. Biri kürkü yırtık erkek kel kör kirpi, öteki kürkü yırtık dişi kel kör kirpi. Kürkü yırtık erkek kel kör kirpinin yırtık kürkünü, kürkü yırtık dişi kel kör kirpinin yırtık kürküne; kürkü yırtık dişi kel kör kirpinin yırtık kürkünü, kürkü yırtık erkek kel kör kirpinin yırtık kürküne eklemişler."
veya
"Sizin bacaya konmuş allı ballı kabaklı baykuşa, bizim bacaya konmuş allı ballı kabaklı baykuş demiş ki; Nasılsın allı ballı kabaklı baykuş..?"
Bu şekilde sürekli söylenebilen tekerlemeler sözel dilde karşımıza çıkabilecek örüntü örneğidir. Aynı cümleler defalarca aynı şekilde aynı kurallı olarak devam eder gider. Bir desen, tekrar eden bir dizi veya dizidir. Desenleri (renkler, şekiller, eylemler veya tekrar eden diğer diziler gibi) her yerde gözlemleyebilirsiniz. Binalardaki şarkılar, çizgiler ve eğrilerdeki veya hatta çeşitli öğelerin kutularının ve kavanozlarının sıralandığı markette veya bir müzikte sıralanmış notalar veya melodiler birer örüntü örneği olarak karşımıza çıkar. Örüntü bir desen ve ya bir model olabileceği gibi bir fikir bir kavram da olabilir. Bazı desenler belli bir şeyi tekrar ede ede oluşurlar. Örneğin fayans döşeli bir zemindeki gibi sürekli tekrarlanan bir sıra ve desen bir örüntüdür. Ancak, örüntü veya desen bulmak için en yaygın yerlerden biri matematiktir. Matematik kalıpları, bir kural veya kurallara göre yinelenen dizilerdir. Matematikte kural, bir problemi hesaplamak veya çözmek için belirlenmiş bir yoldur.
Matematikte örüntü örnekleri sıklıkla görülebilir. Özellikle belli bir kurala sahip aritmetik ve geometrik diziler örüntü olarak kabul edilebilir. Kuralı belirlenmiş fonksiyonlar da bir örüntü örneğidir. Diziler içide örüntüye en güzel örnek olarak Fibonacci dizisi verilebilir. Altın Oran sabitesi de Fibonacci dizisi yardımıyla ortaya çıkmıştır.
Fibonacci dizisi sayıları 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, … vb. şeklinde devam eder. Dikkat edilecek olursa her sayı kendinden önce gelen iki sayının toplamı şeklinde sonsuza kadar gider.(Bkz. Altın Oran)
Aritmetik diziler de birer örüntü örneğidir. Aritmetik dizi, bir sıra, belirli bir kurala dayalı olarak bir kalıbı izleyen sayı grubudur. Aritmetik bir dizi, aynı miktarın eklendiği veya çıkarıldığı bir sayı dizisini içerir. Toplanan veya çıkarılan miktara ortak fark denir. Örneğin, “1, 4, 7, 10, 13…” dizisinde, sonraki sayıyı elde etmek için her sayı 3'e eklenmiştir. Bu dizi için ortak fark 3'tür.
Geometrik diziler de birer örüntü örneğidir. Geometrik dizi/sıra, aynı miktarla çarpılan (veya bölünen) sayıların listesidir. Sayıların çarpılma miktarı ortak oran olarak bilinir. Örneğin, “2, 4, 8, 16, 32 ...” dizisinde her sayı 2 ile çarpılır. 2 sayısı, bu geometrik dizi için ortak orandır.
Üçgensel Sayılar da bir örüntü örneğidir. Üçgensel sayı, bir dizinin terimleri, bir üçgen oluşturmak için gereken noktaların toplam sayısı ile ilgilidir. Üç noktalı bir üçgen oluşturmaya başlarsın; biri üstte ve ikisi altta. Bir sonraki satırda üç nokta olacak ve toplam altı nokta olacaktı. Üçgendeki bir sonraki satırda dört nokta olacak ve toplam 10 nokta olacaktı. Aşağıdaki satırda toplam 15 nokta olmak üzere beş nokta olacaktır. Bu nedenle, üçgen bir dizi başlar: “1, 3, 6, 10, 15…”)
Kare Sayılar da bir örüntü örneğidir. Kare sayı dizisinde, terimler dizideki konumlarının kareleridir. Bir kare dizisi “1, 4, 9, 16, 25…” ile başlar.
Küp Numaraları da bir örüntü örneğidir. Bir küp numarası dizisinde, terimler dizideki konumlarının küpleridir. Bu nedenle, bir küp dizisi “1, 8, 27, 64, 125…” ile başlar.
Buna benzer şekilde pek çok kuralı ihtiva eden diziler birer örüntü örneği olmaya adaydır. Cebir ve Matematik bazen desen-örüntü bilimi olarak da adlandırılır. Matematiğin kurallı bir yapısı vardır. ve bu yapı sayesinde bizler problemleri rahatlıkla çözebiliyoruz. Yapılar, kurallar, teoremler, sonuçlar, örüntüler, anlamlı kalıplar bir problemin çözümü için bizlere kolaylık sağlamak amacıyla tıpkı birer, desen gibi matematik biliminde inşa edilmiştir. Gerçek dünyada, karşımıza çıkan pek sonucun yansımasını modelleyebilmek, bilgisayar düzenine aktarabilmek gibi pek çok eylemi tanımlamak için matematiği kullanırız. Gezegenlerin yıldızların hareketlerini çözümlemek için de matematik kullanılır. Belirli bir zamanda nerede olacaklarını anlamak için yörünge gezegenlerinin hızlarından yola çıkarak anlamlı kurallar oluşturulur. (Gerçekte, gezegenler uzayda diğer büyük cisimlerden olan mesafelerinden etkilenen yerçekimi çekilmesine tepki olarak yavaşlar ve hızlanırlar, ancak bu varyasyon bile bir desen izler) Bunlar heyecan verici kalıplardır. Bir mikro hücrenin bir virüsün bölünme ve çoğalma hızları için de belli kalıplara sahip örüntü ve modellemeler oluşturmak için matematikten yararlanılır.
Örüntüler; bir alandaki sonuçları analiz edebilmek için, bölüm, kalıplar ve kalıp etkinlikleri hakkında düşünme yollarını açıklamak için kullanabileceğimiz en kolay modellemelerdendir. Tanıma, çoğaltma, genişletme, oluşturma ve bunların tamamında kalıpların genelleştirilmesi anlamında örüntü oluşturmaya daha terim anlamıyla fonksiyon veya dizi kuralını belirlemeye ihtiyacımız vardır. Bunu yapabilmenin en temel yolu da örüntüyü kestirebilmek ve bunun sayısal olarak modellemesini yapabilmekten geçer. Her bilim dalında desen veya örüntüler vardır. Bunların analizi için de modellemeye ve özellikle bilgisayar üzerine aktarılması için de çeşitli algoritmalara ihtiyaç vardır.
Örüntüler gündelik hayatlarımızda da sık sık karşımıza çıkar. görsel olarak (iki hızlı davul ritmi ve ardından yavaş bir tane; bir kuş çağrısı; veya kalp atışımız), görsel olarak (itfaiye aracı uyarı ışıkları, kaldırım geçidindeki şeritler), somatik olarak dokunsal veya aksiyona dayalı duyumlar (dokunarak) algılayabiliriz. kişinin ayağını müziğe, daha önce bahsedilen davul çalmalarını çalmaya) veya üç boyutlu nesneler olarak (bir yeşil blok-bir kırmızı blok-iki mavi blok-bir yeşil blok-bir kırmızı blok – iki mavi blok; nergis-papatya-nergis-papatya ). gibi pek çok örnek örüntü modellemeleri için verilebilir.
Desenler, bir bakışta algılayabildiğimiz düzenliliklerdir. Desenleri ayırt etmek için bir desen birimini tanımlamalıyız (blok örneğinde: “yeşil – kırmızı – mavi – mavi”). Sadece bu desen birimindeki öğeleri tek tek değil, aynı zamanda desen biriminin nasıl tekrarlandığını da anlamalıyız. Yalnızca AB görürseniz, kalıbı tanımlamak için yeterli kanıtınız yoktur. Ancak AB biriminin ABABAB'da olduğu gibi tekrarlandığını görürseniz, kararınızdan emin olabilirsiniz. Bu örneklerin tümü yinelenen kalıplardır. Dünyamız da büyüyen desenlerle doludur. Başka bir deyişle, ABAB olarak tanımlanan bir desen, kırmızı boncuk-mavi boncuk-kırmızı boncuk-mavi boncuk gibi görünebilir. Bunu söylemenin başka bir yolu, bu farklı desen tezahürlerinin (sesler veya harfler veya alkışlar) birbirine eşdeğer olduğunu söylemektir. (Desenleri bu şekilde düşünmeyi öğrenmek, birçok farklı tezahürde desenlerle çalışma konusunda çok fazla deneyim gerektirebilir.) Desen oluşturma cebirde fonksiyon veya dizi oluşturmak için erken bir yapı taşı olarak kabul edilir. Kalıpları genelleme yeteneği, daha sonraki cebirsel denklemleri anlamalarına katkıda bulunur.
Tüm fraktallar kendine benzer ya da en azından tümüyle kendine benzer olmamakla birlikte, çoğu bu özelliği taşır. Kendine benzer bir cisimde cismi oluşturan parçalar ya da bileşenler cismin bütününe benzer. Düzensiz ayrıntılar ya da desenler giderek küçülen ölçeklerde yinelenir ve tümüyle soyut nesnelerde sonsuza değin sürebilir; öyle ki,her parçanın her bir parçası büyütüldüğünde, yine cismin bütününe benzer. Bu fraktal olgusu, kar tanesi ve ağaç kabuğunda kolayca gözlenebilir. Bu tip tüm doğal fraktallar ile matematiksel olarak kendine benzer olan bazıları, stokastik, yani rastgeledir; bu nedenle ancak istatistiksel olarak ölçeklenirler.
Fraktal cisimler,düzensiz biçimli olduklarından ötürü Öklidçi şekilleri ötelenme bakışına sahip değildirler. (Ötelenme bakışımına sahip bir cisim kendi çevresinde döndürüldüğünde görünümü aynı kalır.)
Fraktalların bir başka önemli özelliği de, fraktal boyut olarak adlandırılan bir matematiksel parametredir. Bu cisim ne kadar büyütülürse büyütülsün ya da bakış açısı ne kadar değiştirilirse değiştirilsin, hep aynı kalan fraktalların bir özelliğidir.
Fraktaller, kendilerini farklı ölçeklerde tekrarlayan motiflerdir. Sıkça kullanılan bir örnek brokolidir; her küçük çiçekçik temel motif olarak kendisini tekrarlayarak bir sonraki çiçekçik katını oluşturur ve brokolinin nihai şekli böylece tamamlanır.Yakın zamanda yapılan araştırmalar bireylerin davranışlarının, takım ve kurumların işleyişinin, pazar dinamiklerinin, ekonomilerdeki hareketliliğin, hatta çevre ve toplum gibi kapsayıcı sistemlerin hareketlerinin fraktal dinamikler gösterdiğine işaret eder. Fraktal sistemlerin özgünlüğü bir temel motifin (brokolinin çiçekçiği örneğinde olduğu gibi) bütün bir sistemin yapısını kararlaştırmasıdır. Temel motifi keşfet, değiştir ve bütün sistem değişsin. Temel motifin değiştirilmesiyle bir kurumun müteakip düzeyleri, pazara, çevre ve topluma yaklaşımı ve bunlarla olan tüm ilişkileri de değiştirilir.
Kendine benzerlik ve tamsayı olmayan boyutlu kavramlarıyla birlikte fraktal geometri, istatistiksel mekanikte, özellikle görünürde rastgele özelliklerden oluşan fiziksel sistemlerin incelenmesinde giderek daha yaygın olarak kullanılmaya başlanmıştır. Örneğin, gökada kümelerinin evrendeki dağılımının saptanmasında ve akışkan burgaçlanmalarına ilişkin problemlerin çözülmesinde fraktal benzetimlerden (simülasyon) yararlanılmaktadır. Fraktal geometri bilgisayar grafiklerinde de yararlı olmaktadır. Fraktal algoritma ise, engebeli dağlık araziler ya da ağaçların karışık dal sistemleri gibi karmaşık, çok düzensiz doğal cisimlerin gerçektekine benzer görüntülerinin oluşturulabilmesini olanaklı kılmıştır.
Fraktallar da bir çeşit örüntüdür.Fakat daha önce gördüğümüz örüntülerden farklıdır. Fraktallar virüs gibidir, her bir parçasından devamlı benzer parçaları oluşur.Normal örüntülerde ise benzer parçalar vardır fakat bu parçalar birbirinden oluşmaz. Bir şeklin fraktal olup olmadığını anlamamızı sağlayan en önemli nokta budur. Fraktallara en çok verilen örnek eğrelti otudur. Eğrelti otunun her yaprağının üzerinde yine küçük küçük yapraklar vardır.
Fraktal geometri, denklemlerin bir sayı koleksiyonundan daha fazlasını göstermek için sanatı matematikle karıştırır. Fraktalları daha da ilginç kılan, kıyı çizgileri, dağlar veya canlı organizmaların parçaları gibi birçok doğal formun mevcut en iyi matematiksel açıklamaları olmalarıdır. Fraktal geometri bilgisayar teknikleri ile yakından bağlantılı olmasına rağmen, bazı insanlar bilgisayarların icadından çok daha önce fraktallar üzerinde çalışmışlardır. Özellikle harita çizimleriyle uğraşan insanlar bu fraktal geometrinin temelini oluşturanlardır diyebiliriz. Harita çiizmlerinde özellikle kıyıların çizimi, dağların ovalarla birlikte çizimlerinde harita boyutlarına göre farklı türlerde algılanabiliyordu. Harita ölçeği büyütüldüğünde ya da küçültüğünde çizimlerde bozulmalar meydana gelmediği gibi farklı bir görüntü de elde edilmiyordu. Büyük ölçekli bir haritada ölçülen sahil şeridi, ayrıntılı bir haritada ölçülen sahil şeridinin yaklaşık yarısı kadardı. Yakından baktıklarında, kıyı şeridi daha ayrıntılı ve daha uzun oluyordu. İşte bu durum aslıdna fraktalın temel özelliğiydi. Yıllar önce bilgisayarın dahi olmadığı dönemlerde bu şekilde bir özelliği keşfetmiş olmaları esasında Fraktalların ana özelliklerinden birini keşfettikleri anlamına gelmekteydi. Bugün bile hala sorgulanan Piri Reisin harita çizimleri, bu bakış açısıyla tekrar irdelenirse matematikteki bu fraktal güzelliğine daha fazla katkılar sunabileceği açıktır.
Fraktalların en önemli özelliklerinden ikisi öz-benzerlik ve tamsayı olmayan boyuttur. Fraktalları birçok kez büyütebilirsiniz ve her büyütme veya küçültme adımından sonra o fraktalın karakteristiği olan aynı şekli görürsünüz. Tamsayı olmayan boyutu açıklamak daha zordur. Klasik geometri, tamsayı boyutlardaki nesnelerle ilgilidir: sıfır boyutlu noktalar, bir boyutlu çizgiler ve eğriler, kareler ve daireler gibi iki boyutlu düzlem figürler ve küpler ve küreler gibi üç boyutlu katılar. Bununla birlikte, birçok doğal olay, iki tam sayı arasındaki bir boyut kullanılarak daha iyi açıklanmaktadır. Dolayısıyla, düz bir çizginin bir boyutu olsa da, bir fraktal eğri, büküldükçe ve eğrildikçe ne kadar yer kapladığına bağlı olarak bir ile iki arasında bir boyuta sahip olacaktır. Düz fraktal bir düzlemi ne kadar fazla doldurursa, iki boyuta o kadar yaklaşır. Benzer şekilde, "tepelik bir fraktal sahne" iki ile üç arasında bir boyuta ulaşacaktır. Dolayısıyla, küçük höyüklerle kaplı büyük bir tepeden oluşan fraktal manzara ikinci boyuta yakın olurken, birçok orta boy tepeden oluşan pürüzlü bir yüzey üçüncü boyuta yakın olacaktır.
Fraktal geometri astrofizik, biyolojik bilimler gibi birçok bilim alanına nüfuz etmiş ve bilgisayar grafiklerinde en önemli tekniklerden biri haline gelmiştir.Fraktal dağılımlar, gökyüzünde duman izleri veya dalgalı bulutlar gibi hiyerarşiktir. Türbülans, hem gökyüzündeki bulutları hem de uzaydaki bulutları şekillendirir ve onlara fraktal geometri yardımı olmadan tanımlanması imkansız olan düzensiz ama tekrarlayan bir desen verir.Biyologlar, doğal nesneleri veya serilerin Öklid temsillerini kullanarak doğayı geleneksel olarak modellenmiştir. Kalp atışlarını sinüs dalgaları, kozalaklı ağaçlar koniler, hayvan habitatları basit alanlar ve hücre zarları eğriler veya basit yüzeyler olarak temsil ettiler. Bununla birlikte, bilim adamları birçok doğal yapının fraktal geometri kullanılarak daha iyi karakterize edildiğini fark ettiler. Biyolojik sistemler ve süreçler; tipik olarak, sürekli azalan bir formda tekrarlanan aynı genel desen ile birçok alt yapı seviyesi ile karakterize edilir.
Bilim adamları bir kromozomun temel mimarisinin ağaç benzeri olduğunu keşfettiler; her kromozom birçok 'mini kromozomdan' oluşur ve bu nedenle fraktal olarak tformüle edilebilir.
KaynaklarDNA dizilerinde de kendine benzerlik bulunmuştur. Bazı biyologların görüşüne göre hayvanlarda evrimsel ilişkileri çözmek için DNA'nın fraktal özellikleri kullanılabilir.Ay manzaraları, dağ sıraları ve kıyı çizgileri gibi doğal sahnelerin her türlü gerçekçi "fraktal sahteleri" görüntülerini oluşturmak mümkündür. Filmlerde gerçeğine kullanmanın zor olduğu görüntülü durumlarda bilgisayar yazılımları sayesinde sahte fraktal formları üretilerek gerçekçi görüntüler kullanılabilir. Sanal gerçeklik adı verilen formlar fraktalların teknolojik alandaki yansımalarından yalnızca bazılarıdır. Birçok bilim adamı, fraktal geometrinin çok çeşitli sistemlerden sırları ortaya çıkarmak ve uygulamalı bilimdeki önemli sorunları çözmek için güçlü bir araç olduğunu bulmuştur. Bilinen fiziksel fraktal sistemlerin listesi çok uzundur ve hızla çeşitli alanlara da doğru büyümektedir. Fraktal geometri zaman geçtikçe daha fazla incelenecek ve daha fazla özellikleri keşfedilerek yeni alanlarda kullanıma sunulacaktır. Belki de zamanla yerini daha farklı sistem ve görüntülere bırakıp unutulmaya yüz tutacak akıllarda sadece matematiğin desensel bir formu olarak kalacaktır.
KAYNAKÇA:
1) Fraktal Geometri, Prof. Dr. H. Hilmi Hacısalihoğlu, Ankara, 2005
2) matder.org.tr
3) tr.wikipedia.org/wiki/Fraktal
4) matlab.s5.com/fraktal.htm
5) oyakcimento.com/turkce/incvbs/DosyaOku.asp?intDokumanID=2137
6) prek-math-te.stanford.edu/patterns-algebra/mathematics-patterns-and-algebra
7) fractal.org/Bewustzijns-Besturings-Model/Fractals-Useful-Beauty.htm
Takip et: @kpancar |
|
''Fraktal ile örüntü arasındaki farklar'' Bu Blog yazısı;
Eylül 06, 2011 tarihinde dönüşüm geometrisi, fraktal, fraktal geometri, geometri, matematik kategori başlıklarında eklenmiş olup Muallim tarafından yayınlanmıştır. Ayrıca henüz yorum yapılmamış bir yazıdır. Yazımızda hatalı bir içerik olduğunu düşünüyorsanız lütfen 'kpancar@yahoo.com' mail adresimize bildiriniz. Dualarınızı bekleriz.
Matematik Konularından Seçmeler
matematik
(214)
geometri
(124)
üçgen
(49)
ÖSYM Sınavları
(46)
trigonometri
(38)
çember
(30)
fonksiyon
(28)
sayılar
(26)
alan formülleri
(25)
türev
(22)
analitik geometri
(19)
denklem
(18)
dörtgenler
(17)
limit
(16)
belirli integral
(13)
katı cisimler
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(4)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)
En Çok Okunan Yazılar
-
ÖSYM'nin 15/06/2019 Tarihinde gerçekleştirdiği TYT matematik sınavı, farklı tarzda ayırt edici sorular içermekle birlikte, 2018 yılı TY...
-
Fonksiyonların grafiğini çizebilmek için aşağıdaki temel adımlar uygulanır. Burada anlatılanlar, her türlü fonksiyonun grafiğini el yordamı...
-
Bu yazıda Esma-ül Hüsna hakkında kısaca bilgi verildikten sonra Ebced hesabı ile arasındaki ilişkiyi açıklayıp bütün 99 ismin ebced değerle...
-
Koordinat düzleminde çizilen birim çember için çember üzerinde alınan rastgele bir L noktasından x ve y eksenlerini kesecek biçimde bir doğ...
-
Ehl-i Sünnet itikâdını, nazım (şiir) olarak anlatan ünlü ve önemli eserlerden biri; kuşkusuz Emâlî kasidesidir. "Bed'ül Emali...
-
x, bir gerçek (reel) sayı olmak üzere, x'ten büyük olmayan en büyük tamsayıya x'in tam değeri denir. Bunu ifade eden fonksiyona tam ...
-
Herhangi bir dörtgenin alanı köşegen uzunlukları ile köşegenlerin arasında yer alan açının sinüsünün çarpımının yarısı ile hesaplanır. Bura...
0 yorum:
Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."
İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...