Net Fikir » türev » Türevle Grafik Çizimi
Türevle Grafik Çizimi
Etiketler :
asimptot
grafik çizimi
matematik
türev
Fonksiyonların grafiğini çizebilmek için aşağıdaki temel adımlar uygulanır. Burada anlatılanlar, her türlü fonksiyonun grafiğini el yordamıyla çizmek için genel şartları içerir. Daha üst fonksiyonların çiziminde çeşitli matematik yazılımları kullanılabilir. Bir fonksiyonun grafiğini çizmek o fonksiyonun fotoğrafını çekmek gibi olduğundan bize fonksiyon hakkında kısa ve net bir şekilde görsel bir bilgi verir.
1) Fonksiyonun tanım kümesi bulunur. Bulunan tanım kümesi çizim yapılırken dikkate alınır.
2) Fonksiyon periyodik bir fonksiyon ise periyodu bulunur. (Trigonometrik Fonksiyonlar gibi)
3) Varsa Yatay ve düşey asimptotları bulunur. (Eğer eğik-eğri asimptotu varsa ayrıca belirlenir)
4) x ve y eksenlerini kestiği noktalar bulunur. x=0 için y eksenini kesen nokta, y=0 için x eksenini kesen nokta bulunur. x ve y eksenini kesmeyen fonksiyonlar ayrıca belirlenir.
5) Fonksiyonun birinci türevi alınır. Ekstremum noktaları bulunur. Maksimum ve minimum olduğu yerler ile artan ve azalan olduğu durumlar belirlenir.
6) Fonksiyonun ikinci türevi alınarak büküm(dönüm) noktası varsa bulunur.
7) Fonksiyonun birinci ve ikinci türevine göre işaret tablosu yapılarak grafiğin artan azalan olduğu aralıklar ile çukurluk ve tümseklik (konveks ve konkav) aralıkları bulunur.
8) Bütün bu veriler ışığında fonksiyonun grafiği çizilir.
Bütün bu adımları incelemek test sınavlarda biraz zaman alabileceğinden özellikle asimptot değerleri, x ve y eksenini kesen noktaların bulunması ve birinci türevin işaret incelemesinin yapılması grafik çizimi için hemen hemen her zaman yeterli olabilmektedir. Ayrıca düşey asimptotu bulurken paydanın köklerinden tek katlı olanların kelebek şeklinde grafiğinin olması ve çift katlı köklerde de baca şeklinde grafik görünümünün olması bize soru çözümlerinde zaman kazandıracaktır.
Bir test sorusu üzerinde kuralı verilen bir fonksiyonun grafiğinin nasıl bulunabileceğini gösterelim. Bu tip soruların çözümünde düşey ve yatay asimptotlar bulunduktan sonra eksenleri kesen noktalara göre şıklardan eleme usulü ile doğru cevaba ulaşılabilir.
Konuyu kavramaya yardımcı olmak amacıyla bazı fonksiyonların grafikleri çizilerek aşağıda verilmiştir. Burada çizilen fonksiyonların grafiklerinde baca ve kelebek şekli olma durumları ile asimptotların yerlerini dikkatle inceleyiniz.

Bu yazıyı aşağıdaki bağlantılar yardımıyla sosyal ağlarda paylaşabilirsiniz. E-Posta ile arkadaşlarınıza yollayabilirsiniz...
|
Takip et: @kpancar |

İlginizi Çekecek Diğer Yazılarımız
Aşağıdaki Yazılar İlginizi Çekebilir!!!
03.12.2010 - 0 YorumBlaise Pascal, Fransız matematikçi ve filozofudur. 30 yıl savaşlarının kargaşalı döneminde Clermont’ta dünyaya gelmiştir. Babası kraliyet danışmanıydı. Bu sosyal konumu, aileye maddî meselelerden uzak bir hayat sağlıyordu. Blaise üç yaşındayken…
17.02.2019 - 0 YorumSteradyan: kürenin merkezini tepe olarak alan ve küre yüzeyinde bu kürenin yarıçapına eşit bir kare kadar alan ayıran uzay açısına eşittir. Boyutsuz bir büyüklük olup, 1995 yılından itibaren türetilmiş steradyan (sr) birim olarak tanımlanmıştır.…
12.01.2013 - 0 Yorum Daha çok ilkokul ve ortaokul seviyesine göre hazırlanmış matematiksel işlem becerisini arttırıcı oyunlardan oluşan güzel eğlenceli bir kitap. Toplamayı, çıkarmayı, çarpmayı ve bölmeyi yıldırım hızıyla yapmanız için tüm engelli ortadan…
13.03.2021 - 0 YorumKenarortay Eşitsizliği: Üçgende herhangi bir kenara ait kenarortay uzunluğu, üçgenin diğer iki kenarının toplamının yarısından daima küçüktür.**Bir üçgende kenarortay uzunluklarının toplamı, üçgenin yarı çevresinden büyük ve üçgenin çevresinden…
06.09.2014 - 0 Yorum "Görme engelli öğrencilerin matematik alanında yaşadığı sıkıntılara yönelik Japonya'da geliştirilen "İnfty Yazılım Programı" Türkçe'ye uyarlanarak Türkiye'de de kullanılmaya başlanacak. Matematik alanındaki kaynakların dijital ortama aktarılmasıyla…
24.12.2008 - 0 Yorum “Şimdilik, mübarek ramazan ayının gelmesini bekliyorum. Bu ayın, Kur'an-ı Mecid'le tam bir münasebeti var. Hem de zata bağlı kemalatı ve onun zuhuratı sayılan işlerin tümünü özünde toplamak sureti ile.. Kaldı ki o, asalet dairesine dahildir.…
01.01.2016 - 0 Yorum İki yararlı android uygulaması paylaşmak istiyorum. Özellikle gençlerin ilgisini çekebilecek ve derslerde bir zenginlik görsellik oluşturması açısından yararlı olabilecek bu uygulamaları istifadenize sunuyorum. Öğrencilerin özellikle biyoloji…
21.12.2009 - 0 Yorum Bir yılı da artık acısıyla tatlısıyla geride bırakıyoruz. Ömrümüzden bir yaprak daha kopup bir lahza daha ölüme yaklaşıyoruz. Her geçen gün ardından ölümün nefesi daha şiddetli bir şekilde bizi kaplıyor. Yeni yıl insanlar için neşe kaynağı mı yoksa…
Matematik Konularından Seçmeler
matematik
(260)
geometri
(124)
ÖSYM Sınavları
(50)
üçgen
(49)
trigonometri
(39)
çember
(31)
sayılar
(30)
fonksiyon
(28)
alan formülleri
(25)
türev
(23)
analitik geometri
(19)
denklem
(18)
dörtgenler
(18)
limit
(16)
belirli integral
(13)
katı cisimler
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(4)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)
çok açıklayıcı olmuş teşekkürler
YanıtlaSilYenilenmiş matematik müfredatında (2016), eğik ve eğri asimptot grafikleri programdan çıkarılmıştır. Bu tür eğri ve eğik asimptot grafiklerinin çizilmesi lise düzeyindeki öğrencilerimizden beklenmemektedir. Bu konu anlatımında Eğik ve eğri asimptot içeren grafik tarzlarına da örnekler verilmiştir.
YanıtlaSilHocam tesekkürler elinize sağlık
YanıtlaSilhocam bu ne ya
YanıtlaSilTürev yardımıyla grafik çizimi anlatılmıştır. Konu 12.sınıf müfredatı ve biraz ileri seviyeye uygun niteliktedir.
SilÜniversite öğrencilerine yönelik olmuş teşekkürler...
YanıtlaSilya varya siz gralsınız hocam anlattı beynim yandı burda mis gibi anlatmışsınız <333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333
YanıtlaSilbenim tek anlamadığım tabloyu çizerken azalan artan ve +, - neye göre yapıldı onda sıkıştım.
YanıtlaSilbirinci türevin işaretine göre tabloya (+) ve (-) işaretleri yazılır ve buna göre artanlık, azalanlık birinci türevden belirlenir
Sil