Net Fikir » türev » Türevle Grafik Çizimi
Türevle Grafik Çizimi
Etiketler :
asimptot
grafik çizimi
matematik
türev
Fonksiyonların grafiğini çizebilmek için aşağıdaki temel adımlar uygulanır. Burada anlatılanlar, her türlü fonksiyonun grafiğini el yordamıyla çizmek için genel şartları içerir. Daha üst fonksiyonların çiziminde çeşitli matematik yazılımları kullanılabilir. Bir fonksiyonun grafiğini çizmek o fonksiyonun fotoğrafını çekmek gibi olduğundan bize fonksiyon hakkında kısa ve net bir şekilde görsel bir bilgi verir.
1) Fonksiyonun tanım kümesi bulunur. Bulunan tanım kümesi çizim yapılırken dikkate alınır.
2) Fonksiyon periyodik bir fonksiyon ise periyodu bulunur. (Trigonometrik Fonksiyonlar gibi)
3) Varsa Yatay ve düşey asimptotları bulunur. (Eğer eğik-eğri asimptotu varsa ayrıca belirlenir)
4) x ve y eksenlerini kestiği noktalar bulunur. x=0 için y eksenini kesen nokta, y=0 için x eksenini kesen nokta bulunur. x ve y eksenini kesmeyen fonksiyonlar ayrıca belirlenir.
5) Fonksiyonun birinci türevi alınır. Ekstremum noktaları bulunur. Maksimum ve minimum olduğu yerler ile artan ve azalan olduğu durumlar belirlenir.
6) Fonksiyonun ikinci türevi alınarak büküm(dönüm) noktası varsa bulunur.
7) Fonksiyonun birinci ve ikinci türevine göre işaret tablosu yapılarak grafiğin artan azalan olduğu aralıklar ile çukurluk ve tümseklik (konveks ve konkav) aralıkları bulunur.
8) Bütün bu veriler ışığında fonksiyonun grafiği çizilir.
Bütün bu adımları incelemek test sınavlarda biraz zaman alabileceğinden özellikle asimptot değerleri, x ve y eksenini kesen noktaların bulunması ve birinci türevin işaret incelemesinin yapılması grafik çizimi için hemen hemen her zaman yeterli olabilmektedir. Ayrıca düşey asimptotu bulurken paydanın köklerinden tek katlı olanların kelebek şeklinde grafiğinin olması ve çift katlı köklerde de baca şeklinde grafik görünümünün olması bize soru çözümlerinde zaman kazandıracaktır.
Bir test sorusu üzerinde kuralı verilen bir fonksiyonun grafiğinin nasıl bulunabileceğini gösterelim. Bu tip soruların çözümünde düşey ve yatay asimptotlar bulunduktan sonra eksenleri kesen noktalara göre şıklardan eleme usulü ile doğru cevaba ulaşılabilir.
Konuyu kavramaya yardımcı olmak amacıyla bazı fonksiyonların grafikleri çizilerek aşağıda verilmiştir. Burada çizilen fonksiyonların grafiklerinde baca ve kelebek şekli olma durumları ile asimptotların yerlerini dikkatle inceleyiniz.

Bu yazıyı aşağıdaki bağlantılar yardımıyla sosyal ağlarda paylaşabilirsiniz. E-Posta ile arkadaşlarınıza yollayabilirsiniz...
|
Takip et: @kpancar |

İlginizi Çekecek Diğer Yazılarımız
Aşağıdaki Yazılar İlginizi Çekebilir!!!
25.11.2012 - 0 YorumOnbeşinci yüzyılda yaşamış önemli bir astronomi ve matematik bilginidir. (1403, Semerkand - 16 Aralık 1474, İstanbul) Asıl adı Ali b. Muhammed'dir. Babası Timur’un torunu olan Uluğ Bey’in doğancıbaşısı idi. “Kuşçu” lakabı buradan gelmektedir. …
03.02.2019 - 0 YorumRivayet odur ki, Sultan Alaaddin zamanında üç Hristiyan papaz, Anadolu’yu dolaşarak halkın kafasını karıştırmayı kendilerine görev edinmişler... Gittikleri yerlerde o yörenin en âlim kişisini bulup, papazlardan her biri o alim kişiye cevabı…
13.12.2023 - 0 YorumArdışık terimleri arasındaki fark eşit olan dizilere aritmetik dizi denir. Aritmetik dizilerde ardışık terimler arasındaki artış veya azalış miktarına ortak fark denir ve genellikle "d" harfi ile gösterilir. Aralarındaki artış miktarı 3 ve ilk…
23.11.2010 - 0 Yorum Hacet Namazı: Âhirete veya dünyaya ait bir dileği bulunan kimse, güzelce abdest alır ve bir rivayete göre dört, diğer bir rivayete göre on iki rekât namazı yatsıdan sonra kılar. Sonra Yüce Allah'a hamd eder, Peygamber Efendimize de…
21.06.2019 - 0 Yorum2019 TYT Matematik sınavındaki sorular, tamamen lise müfredatı içerisinde olan konuların yenilikçi tarzda probleme dayalı sorulardan oluşmuştur. Ders kitabı bilgileri ve matematik müfredatı dikkate alınarak hazırlanan sınavda 30 soru Matematik, 10…
18.05.2014 - 2 Yorum Bir üçgenin herhangi bir köşesinden, karşı kenarına indirilen dikmenin karşı kenarı kestiği nokta ile köşeyi birleştiren doğru parçasına, üçgenin o kenarına ait yüksekliği denir. Bir üçgende üç yükseklik bir noktada kesişir. Bu noktaya üçgenin…
06.04.2020 - 0 YorumKenarortay, bir üçgende herhangi bir kenarın orta noktasını, o kenara ait karşı köşeye birleştiren doğru parçasıdır.Kenarortayların kesiştiği noktaya o üçgenin ağırlık merkezi denir ve G harfi ile adlandırılır. Bir üçgende ağırlık merkezi…
12.08.2016 - 0 Yorum Çarpma, temel matematik işlemlerinden biridir. Sayılarda çarpma, çarpılan sayının çarpan sayı kadar adedinin toplamının alınması işlemidir. Aslında özel olarak bir toplama işlemidir. Çapma işlemi belli adetteki sayıların toplanmasının adıdır.…
Matematik Konularından Seçmeler
matematik
(260)
geometri
(124)
ÖSYM Sınavları
(50)
üçgen
(49)
trigonometri
(39)
çember
(31)
sayılar
(30)
fonksiyon
(28)
alan formülleri
(25)
türev
(23)
analitik geometri
(19)
denklem
(18)
dörtgenler
(18)
limit
(16)
belirli integral
(13)
katı cisimler
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(4)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)
çok açıklayıcı olmuş teşekkürler
YanıtlaSilYenilenmiş matematik müfredatında (2016), eğik ve eğri asimptot grafikleri programdan çıkarılmıştır. Bu tür eğri ve eğik asimptot grafiklerinin çizilmesi lise düzeyindeki öğrencilerimizden beklenmemektedir. Bu konu anlatımında Eğik ve eğri asimptot içeren grafik tarzlarına da örnekler verilmiştir.
YanıtlaSilHocam tesekkürler elinize sağlık
YanıtlaSilhocam bu ne ya
YanıtlaSilTürev yardımıyla grafik çizimi anlatılmıştır. Konu 12.sınıf müfredatı ve biraz ileri seviyeye uygun niteliktedir.
SilÜniversite öğrencilerine yönelik olmuş teşekkürler...
YanıtlaSilya varya siz gralsınız hocam anlattı beynim yandı burda mis gibi anlatmışsınız <333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333
YanıtlaSilbenim tek anlamadığım tabloyu çizerken azalan artan ve +, - neye göre yapıldı onda sıkıştım.
YanıtlaSilbirinci türevin işaretine göre tabloya (+) ve (-) işaretleri yazılır ve buna göre artanlık, azalanlık birinci türevden belirlenir
Sil