Bir paralelkenarda, alan hesabı için taban uzunluğu ve yükseklik bilinmelidir. Paralelkenarın yüksekliği, paralelkenar içerisinde bir köşeden karşı kenara dik uzaklık olarak çizilebileceği gibi, o kenarın uzantısına da çizilebilir.
Net Fikir » paralelkenar » Paralelkenarda Alan Hesabı
Paralelkenarda Alan Hesabı
Etiketler :
alan formülleri
dörtgenler
geometri
matematik
paralelkenar
Paralelkenarda herhangi bir kenar uzunluğu ve o kenara ait yüksekliğinin çarpımı, paralelkenarın alanını verir. Paralelkenarın alanı hesaplanırken oluşan iki üçgenin alanları toplamından yararlanılır. Paralelkenarın alanı, üçgenin alanında olduğu gibi sinüs bağıntısı ile de bulunabilir. Buna göre paralelkenarın alanı, birbirinden farklı iki kenar ve bunlar arasında kalan açının sinüsünün çarpımı ile bulunur.
Paralelkenarda herhangi bir köşegen, paralelkenarı iki eşit alana ayırır. Köşegenlerle dört üçgene ayrılmış bir paralelkenarın, her bir üçgen bölümünün alanı birbirine eşittir.
Paralelkenarın bir kenarı üzerinde rastgele bir nokta seçilip, bu noktadan karşı köşelere birer doğru parçası çizilerek üç üçgen meydana getirildiğinde büyük üçgenin alanı kenarlarda meydana gelen diğer üçgenlerin alanları toplamına eşittir. Ayrıca bu büyük üçgenin alanı, paralelkenarın alanının yarısına eşittir.
Paralelkenarın iç bölgesinden herhangi bir nokta alınıp, bu noktadan köşelere doğru parçaları çizilerek üçgenler oluşturulduğunda, oluşan karşılıklı üçgenlerin alanları toplamı birbirine eşit olur. Oluşan bu üçgenlerden karşılıklı olanlarının alanları toplamı, ayrıca paralelkenar alanının yarısına eşittir.
Paralelkenarın alanı, üçgenin alanında olduğu gibi sinüs bağıntısı ile de bulunabilir. Buna göre paralelkenarın alanı, birbirinden farklı iki kenar ve bunlar arasında kalan açının sinüsünün çarpımı ile bulunur. Bir paralelkenarda alan, bütün dörtgenlerde olduğu gibi eğer köşegen uzunlukları verilirse bu köşegenlerin arasındaki açının ölçüsü biliniyorsa sinüs alan formülü ile bulunabilir. Buna göre paralelkenarın alanı, köşegenler çarpımı ile köşegenlerin arasında kalan açının sinüsünün çarpımının yarısı kadar olur. Bu özellik üçgenin sinüs alan bağıntısı ile alan hesabı uygulamasının direkt sonucudur. Paralelkenarda köşegenler birbirini ortaladığından, köşegenler yardımıyla paralelkenarda oluşan dört üçgen için, ayrı ayrı sinüs alan bağıntıları yazılıp, bulunan bütün sonuçlar toplandığında, paralelkenarın alan bağıntısı elde edilir.
Paralelkenarda benzerlik teoremleri kullanılarak, alan hesabı yapılabilir. Bunun için verilen paralelkenar eş yüksekliklere sahip üçgenlere ayrılarak, taban kenarlarına göre alan oranları yazılır. Buna göre bütün üçgen parçalarının alanları toplamı ile paralelkenarın tüm alanı bulunur.
Paralelkenarda alan uygulamları ile ilgili bazı örnekler aşağıda verilmiştir. Çözüm yollarını inceleyebilirsiniz.

Bu yazıyı aşağıdaki bağlantılar yardımıyla sosyal ağlarda paylaşabilirsiniz. E-Posta ile arkadaşlarınıza yollayabilirsiniz...
|
Takip et: @kpancar |

Aşağıdaki Yazılar İlginizi Çekebilir!!!
10.02.2019 - 0 YorumSaat, zamanı ölçmeye yarayan alettir. İki farklı zaman arasındaki farkı insanlar tarafından oluşturulan ölçüler dahilinde ölçmeyi sağlar. Mısırlılar, Güneş'in her gün belirli bir düzende doğup battığını keşfetmişti. Bundan yararlanarak güneş saatini…
24.04.2015 - 0 Yorum Dünyanın şu acayip ortamında, artık herşey herşeye karışmış durumda iken iman sahibi biz müslümanların, imanlarını muhafaza etmenin ne kadar zor olduğunun idarki içindeyiz. Şeytan ve şeytanlaşmış insanlar; iman kalelerini yıkmak için her yönden…
17.04.2014 - 0 Yorum Nasreddin Hoca’ya sormuşlar: “Kimsin?”“Hiç” demiş Hoca, “Hiç kimseyim .Dudak büküp önemsemediklerini görünce,Nasreddin Hoca sormuş: “Sen kimsin?” “Mutasarrıf” demiş adam, kabara kabara.Adamın övündüğünün ve kibirlendiğini görünce “Sonra ne…
04.03.2013 - 0 Yorum Sigara dumanında birçok zehirli kimyevî maddeler vardır. Bu sebeple sigara dumanına maruz kalanlar da içenler gibi zehirlenir. Sigara birçok hastalıkla birlikte kanser de yapmaktadır. Sigara, içen veya dumanına maruz kalan kadınlarda erken doğum,…
09.12.2012 - 1 Yorum Yüzeyleri en basit anlamda incelemek için yüzeyi, verilen bir koordinat sistemi için belirli şartlardaki bir denklemi sağlayan noktalar kümesi olarak alabiliriz. İncelemede kolaylık sağlaması açısından bazı aynı özellikleri gösteren yüzeyleri…
14.06.2015 - 1 Yorum Burada yer alan plan Matematik Müfredatı (2015) konuları baz alınarak hazırlanmıştır. Konular zamanla müfredata göre değişiklik gösterebilir. Eklenen veya çıkarılan konuları MEB müfredatından güncelleyip ona göre bir çalışma planı hazırlayınız.…
13.05.2011 - 0 Yorum61. MADDE: اِذَا تَعَذَّرَ الْحَقِيقَةُ يُصَارُ اِلَى الْمَجَازِ Hakikat özürlenince, mecaza gidilir. Hakiki mananın özürlenmesi halinde, kelam mühmel kılınmaz, belki mecaza gidilir. Mehcur lafız, şer’an ve örfen kullanılmayan lafız olup…
17.03.2010 - 0 Yorum 137- Ramazan orucundan başka hiç bir orucun bozulmasından dolayı bir ceza ve geçmişteki kusuru düzeltme olarak iki ay oruç tutmak gerekmez. Çünkü Kur'an'ın açık beyanı, yalnız tutulan Ramazan orucunun bozulması üzerine keffareti…
Matematik Konularından Seçmeler
matematik
(260)
geometri
(124)
ÖSYM Sınavları
(50)
üçgen
(49)
trigonometri
(39)
çember
(31)
sayılar
(30)
fonksiyon
(28)
alan formülleri
(25)
türev
(23)
analitik geometri
(19)
denklem
(18)
dörtgenler
(18)
limit
(16)
belirli integral
(13)
katı cisimler
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(4)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)
Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."
İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...