Bir paralelkenarda, alan hesabı için taban uzunluğu ve yükseklik bilinmelidir. Paralelkenarın yüksekliği, paralelkenar içerisinde bir köşeden karşı kenara dik uzaklık olarak çizilebileceği gibi, o kenarın uzantısına da çizilebilir.
Net Fikir » paralelkenar » Paralelkenarda Alan Hesabı
Paralelkenarda Alan Hesabı
Etiketler :
alan formülleri
dörtgenler
geometri
matematik
paralelkenar
Paralelkenarda herhangi bir kenar uzunluğu ve o kenara ait yüksekliğinin çarpımı, paralelkenarın alanını verir. Paralelkenarın alanı hesaplanırken oluşan iki üçgenin alanları toplamından yararlanılır. Paralelkenarın alanı, üçgenin alanında olduğu gibi sinüs bağıntısı ile de bulunabilir. Buna göre paralelkenarın alanı, birbirinden farklı iki kenar ve bunlar arasında kalan açının sinüsünün çarpımı ile bulunur.
Paralelkenarda herhangi bir köşegen, paralelkenarı iki eşit alana ayırır. Köşegenlerle dört üçgene ayrılmış bir paralelkenarın, her bir üçgen bölümünün alanı birbirine eşittir.
Paralelkenarın bir kenarı üzerinde rastgele bir nokta seçilip, bu noktadan karşı köşelere birer doğru parçası çizilerek üç üçgen meydana getirildiğinde büyük üçgenin alanı kenarlarda meydana gelen diğer üçgenlerin alanları toplamına eşittir. Ayrıca bu büyük üçgenin alanı, paralelkenarın alanının yarısına eşittir.
Paralelkenarın iç bölgesinden herhangi bir nokta alınıp, bu noktadan köşelere doğru parçaları çizilerek üçgenler oluşturulduğunda, oluşan karşılıklı üçgenlerin alanları toplamı birbirine eşit olur. Oluşan bu üçgenlerden karşılıklı olanlarının alanları toplamı, ayrıca paralelkenar alanının yarısına eşittir.
Paralelkenarın alanı, üçgenin alanında olduğu gibi sinüs bağıntısı ile de bulunabilir. Buna göre paralelkenarın alanı, birbirinden farklı iki kenar ve bunlar arasında kalan açının sinüsünün çarpımı ile bulunur. Bir paralelkenarda alan, bütün dörtgenlerde olduğu gibi eğer köşegen uzunlukları verilirse bu köşegenlerin arasındaki açının ölçüsü biliniyorsa sinüs alan formülü ile bulunabilir. Buna göre paralelkenarın alanı, köşegenler çarpımı ile köşegenlerin arasında kalan açının sinüsünün çarpımının yarısı kadar olur. Bu özellik üçgenin sinüs alan bağıntısı ile alan hesabı uygulamasının direkt sonucudur. Paralelkenarda köşegenler birbirini ortaladığından, köşegenler yardımıyla paralelkenarda oluşan dört üçgen için, ayrı ayrı sinüs alan bağıntıları yazılıp, bulunan bütün sonuçlar toplandığında, paralelkenarın alan bağıntısı elde edilir.
Paralelkenarda benzerlik teoremleri kullanılarak, alan hesabı yapılabilir. Bunun için verilen paralelkenar eş yüksekliklere sahip üçgenlere ayrılarak, taban kenarlarına göre alan oranları yazılır. Buna göre bütün üçgen parçalarının alanları toplamı ile paralelkenarın tüm alanı bulunur.
Paralelkenarda alan uygulamları ile ilgili bazı örnekler aşağıda verilmiştir. Çözüm yollarını inceleyebilirsiniz.

Bu yazıyı aşağıdaki bağlantılar yardımıyla sosyal ağlarda paylaşabilirsiniz. E-Posta ile arkadaşlarınıza yollayabilirsiniz...
|
Takip et: @kpancar |

İlginizi Çekecek Diğer Yazılarımız
Aşağıdaki Yazılar İlginizi Çekebilir!!!
19.03.2009 - 0 YorumBir işte başarılı olmak için yapılacak ilk iş, hedef belirlemek; ikinci iş ise, belirlenen hedefe yönelik bir plan yapmaktır. Bir bina yapılırken, bir yolculuğa çıkılırken, bir alışverişe gidilirken plan yapılır; ya da yapılması gerekir. Eğer…
11.02.2021 - 0 YorumTarihte pek çok kavim, azgınlıklarının ve isyanlarının bir sonucu olarak helak olmuşlardır. Bu kavimler, kendilerine gelen peygamberlerin, tebliğ davetinden yüz çevirip yalanlamaları ve Allah’ın emir ve yasaklarına isyan etmiş olmaları sebebiyle,…
16.07.2024 - 0 YorumÖSYM tarafından daha önceleri YGS ve LYS olarak uygulanan sınav sistemi, 2018 yılından itibaren değiştirilerek YKS (Yükseköğretim Kurumları Sınavı) adını almıştır. Bu yeni sınav sistemine göre hazırlanan 2018-2023 yılları arası YKS istatistiklerine…
05.03.2013 - 0 Yorum İtalyan mektebi mensuplarına göre kâinat bir ahenkler bütünüdür. Dünya sistemi “kâinatın ocağı” ismi verilen mukaddes merkezî ateş etrafında dönen “10” adet semavî cisimden…
02.01.2015 - 0 Yorum Bugün Alemlere rahmet peygamber efendimizin doğum günü sene-i devriyesi olan Mevlid Kandilidir. Bugünü ifade edecek en güzel söz; Allah Rasülüne içten gelerek yapılan salat ve selamdan ibaret olan mübarek sözlerdir. Tüm İslam alemi olarak Mevlid…
07.12.2014 - 0 Yorum Matematik ne işe yarar?" Bu kitabın yazarının en çok sinirlendiği soru bu. Ama matematik öğretmeni olarak en fazla karşılaştığı soru da, aynı zamanda. Peki kusur, yüzlerce formülle karşı karşıya kalıp bunalan öğrenci de mi? Matematik bilgisinin…
23.04.2013 - 0 Yorum Matematik öğretiminde yaşanan sorunlar ve çözüm önerilerini içeren çok güzel bir makaleyi sizinle paylaşmak isitiyorum. Makale Gazi Üniversitesi Eğitim Fakültesi Dergisinden alıntılanmıştır. "Matematik, insanlar tarafından iyi bir yaşamın ve iyi…
14.04.2010 - 0 YorumI Sokaktayım, kimsesiz bir sokak ortasında; Yürüyorum, arkama bakmadan yürüyorum. Yolumun karanlığa saplanan noktasında, Sanki beni bekleyen bir hayal görüyorum. Kara gökler kül rengi bulutlarla kapanık; Evlerin…
Matematik Konularından Seçmeler
matematik
(260)
geometri
(124)
ÖSYM Sınavları
(50)
üçgen
(49)
trigonometri
(39)
çember
(31)
fonksiyon
(28)
sayılar
(27)
alan formülleri
(25)
türev
(23)
analitik geometri
(19)
denklem
(18)
dörtgenler
(18)
limit
(16)
belirli integral
(13)
katı cisimler
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(4)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)
Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."
İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...