Paralelkenar Özellikleri

Etiketler :
Paralelkenar, karşılıklı kenar uzunlukları birbirine eşit olan ve iç açıları toplamı 360 derece olan bir dörtgendir. 
Paralelkenar, yamuk şeklinin özel halidir bu nedenle yamukta yer alan özellikler paralelkenar için de geçerlidir. Ardışık açıların ölçüleri toplamı 180 derecedir. Karşılıklı kenarları, birbirine paralel ve uzunlukları eşittir. Paralelkenarın karşılıklı açıları birbirine eşittir. 
Paralelkenarın köşegenleri birbirini ortalar. Ardışık olmayan köşleri birleştiren köşegen uzunlukları birbirine eşit olmak zorunda değildir. 
Birbirine komşu iki iç açısını birleştiren açıortay doğru parçalarının arasında kalan açı 90 derecedir. Yani paralelkenarda ardışık iki açıortay, birbirine dik olarak kesişir. 
Paralelkenarda herhangi bir kenar uzunluğu ve o kenara ait yüksekliğinin çarpımı, paralelkenarın alanını verir. Paralelkenarın alanı hesaplanırken oluşan iki üçgenin alanları toplamından yararlanılır. Paralelkenarın alanı, üçgenin alanında olduğu gibi sinüs bağıntısı ile de bulunabilir. Buna göre paralelkenarın alanı, birbirinden farklı iki kenar ve bunlar arasında kalan açının sinüsünün çarpımı ile bulunur.
Paralelkenarda herhangi bir köşegen, paralelkenarı iki eşit alana ayırır. Köşegenlerle dört üçgene ayrılmış bir paralelkenarın, her bir üçgen bölümünün alanı birbirine eşittir. Paralelkenarın bir kenarı üzerinde rastgele bir nokta seçilip, bu noktadan karşı köşelere birer doğru parçası çizilerek üç üçgen meydana getirildiğinde büyük üçgenin alanı kenarlarda meydana gelen diğer üçgenlerin alanları toplamına eşittir. Ayrıca bu büyük üçgenin alanı, paralelkenarın alanının yarısına eşittir.

Paralelkenarın iç bölgesinden herhangi bir nokta alınıp, bu noktadan köşelere doğru parçaları çizilerek üçgenler oluşturulduğunda, oluşan karşılıklı üçgenlerin alanları toplamı birbirine eşit olur. Oluşan bu üçgenlerden karşılıklı olanlarının alanları toplamı, ayrıca paralelkenar alanının yarısına eşittir.  
Bir paralelkenarda alan, bütün dörtgenlerde olduğu gibi eğer köşegen uzunlukları verilirse bu köşegenlerin arasındaki açının ölçüsü biliniyorsa sinüs alan formülü ile bulunabilir. Buna göre paralelkenarın alanı, köşegenler çarpımı ile köşegenlerin arasında kalan açının sinüsünün çarpımının yarısı kadar olur. Bu özellik üçgenin sinüs alan bağıntısı ile alan hesabı uygulamasının direkt sonucudur. Paralelkenarda köşegenler birbirini ortaladığından, köşegenler yardımıyla paralelkenarda oluşan dört üçgen için, ayrı ayrı sinüs alan bağıntıları yazılıp, bulunan bütün sonuçlar toplandığında, paralelkenarın alan bağıntısı elde edilir.
Bir paralelkenarın köşelerinden, herhangi bir doğruya çizilen dikme parçalarının uzunlukları karşılıklı toplamları birbirine eşit olur. Bu özellik, esasında yamuktaki orta tabanın, paralelkenar üzerinde gizlenmiş durumudur.


Üçgen benzerliği, paralelkenarda uzunluk hesaplamalarında sıklıkla kullanılan bir konudur. Açıların eşitliği yazıldığı zaman paralellik özelliğinden yararlanarak (veya sonradan ek paralel çizgiler yardımıyla) yeni üçgenler oluşturulup üçgenlerin benzerliğinden çeşitli uzunluklar hesaplanır. Aşağıda benzerlik yardımıyla bulunan bazı kolay sonuçlar verilmiştir.
Benzerlik yardımıyla köşegen üzerinde yer alan parçaların, diğer köşegenle kesilmesi sonucu arasında kalan kenar uzunluklarını hesaplayabiliriz. Aşağıda paralelkenarda benzerlik uygulaması açıklanmıştır.
Paralelkenarda alan uygulamaları için de benzerlik teoremleri sıklıkla kullanılır. (Bkz. Paralelkenarda Alan Hesabı) Alan uygulamalarında, çeşitli tabanlara sahip üçgenler belli oranlarla bölünerek oluşturulan yeni üçgen parçaları yardımıyla, eş yükseklikler kullanılarak paralelkenar parçalanıp bölümlere ayrılabilir. 

Kenar uzunlukları a ve b, köşegen uzunlukları da e ve f olan bir paralelkenarda, oluşan ABC üçgeninde veya ADC üçgeninde, köşegenler ve kenarlar arasında kenarortay teoremi uygulandığı zaman yeni bir teorem elde edilir. Bu teoreme göre, paralelkenarda köşegenlerin kareleri toplamı, paralelkenarın kenarlarının kareleri toplamının iki katına eşit olur. (Kenarortay teoremi ile ilgili ayrıntılı bilgiye ulaşmak için bağlantıyı kullanabilirisiniz. https://muallims.blogspot.com/2013/05/kenarortay-teoremi-ispat.html)

3 yorum:

Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."

İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...

Aşağıdaki Yazılar İlginizi Çekebilir!!!

  • 2023 TYT Matematik testi çözümleri (PDF)01.07.2023 - 0 Yorum17 Haziran 2023 tarihinde uygulanan 2023-YKS 1. Oturum Temel Yeterlilik Testi (TYT), 18 Haziran 2023 tarihinde uygulanan 2023-YKS 2. Oturum Alan Yeterlilik Testleri (AYT) sınavlarının ardından ÖSYM tarafından soru kitapçıkları erişime açılmıştır.…
  • Bazı Eski Kıyafetler (Kumaş ve Giysiler)20.03.2013 - 0 YorumEski dönemlerde kullanılan bu kelimeler; bugün orta Asya'da, Hicaz Yarımadasında, Afrika Kıtasında özellikle İslam Coğrafyasının  yoğun olarak yaşadığı ülkelerde aynı veya benzer isimleriyle halen…
  • Ali Osman Asar, Cebir Kitabı18.11.2012 - 0 YorumGazi Üniversitesi Matematik Ana bilim dalının duayen hocalarından biri olarak emekli olmuş olan Prof. Dr. Ali Osman ASAR, kendi matematik teoremleri ile dünyaca ünlü bir akademisyendir. Ord. Prof. Dr. Cahit ARF ile de akademik bir geçmişi olan ASAR,…
  • Basit Eşitsizlikler Kavrama Testi15.10.2014 - 0 YorumBasit Eşitsizlik kavramını daha iyi anlamak için çeşitli soru tiplerinden derlenerek hazırlanmış kavrama  testini istifadenize sunuyoruz. Sadece basit eşitsizliklerini çözebilme, eşitsizlik kavramının özelliklerini öğrenebilme ve temel…
  • 2021 AYT Matematik Çözümleri (PDF)30.08.2021 - 0 Yorum2021 AYT Matematik sınavındaki sorular, tamamen lise müfredatı içerisinde olan konuların, yenilikçi problem tarzındaki sorulardan oluşmuştur. Önceki yıllara göre zorlayıcı soruların olduğunu kabul etmek gerekir.  Sınav süresive işlemlerin…
  • Yeni matematik müfredatının karşılaştırılması07.07.2024 - 0 Yorum9.sınıfta doğrusal fonksiyonlar, 10. sınıfta gerçek sayılarda veya bir alt kümesinde f(x) = x2, f(x) = , f(x) = 1/x şeklinde tanımlı karesel, karekök, rasyonel referans fonksiyonlar ile bunlardan türetilen karesel, karekök ve rasyonel…
  • Müziğin Temelindeki Matematik27.11.2008 - 0 Yorum "Tarih boyunca pek çok matematikçi müzikle ilgilenmiştir. Bazılarımızın aklına 'Acaba pek çok müzisyen de matematikle ilgilenmiş midir?' gibi bir soru takılabilir. Kuşkusuz ilgilenen müzisyenler vardır ancak bir karşılaştırma yapılırsa…
  • Blaise Pascal ve Tanrı İnancı03.12.2010 - 0 YorumBlaise Pascal, Fransız matematikçi ve filozofudur. 30 yıl savaşlarının kargaşalı döneminde Clermont’ta dünyaya gelmiştir. Babası kraliyet danışmanıydı. Bu sosyal konumu, aileye maddî meselelerden uzak bir hayat sağlıyordu. Blaise üç yaşındayken…