Türkiye Yüzyılı Maarif Modeli adıyla yayınlanan yeni matematik öğretim modelinde önceki yıllarda uygulanan öğretim modelinden farklı olarak bazı değişiklikler olmuştur. Yer alan değişiklikleri genel bir çerçevede ele alan yazımızı aşağıda okuyabilirisiniz.

Öğretim programının amacında "Türkiye Yüzyılı Maarif Modeli’nin becerilerle ilgili bileşenleri; kavramsal beceriler (temel beceriler, bütünleşik beceriler ve üst düzey düşünme becerileri), sosyal-duygusal öğrenme becerileri (benlik becerileri, ortak/bileşik beceriler, sosyal yaşam becerileri), eğilimler, okuryazarlık becerileri ve alan becerilerinden oluşmaktadır. Ortaöğretim Matematik Dersi Öğretim Programı, bilgi edinim sürecine ek olarak bireylerin çağın gerektirdiği becerilerle donatılmasını hedeflemektedir. Program, matematik öğrenme süreçlerini destekleyen ve bu süreçlerle gelişen kavramsal beceriler ve matematik alan becerileri odağa alınarak hazırlanmıştır. Aynı zamanda bu becerilerin eğilimler, sosyal-duygusal öğrenme becerileri ve okuryazarlık becerileri ile etkileşim içinde gelişimi hedeflenmiştir. "
"Ortaöğretim Matematik Dersi Öğretim Programı; matematiksel düşünmenin sistematik, rasyonel, analitik, tutarlı ve ilişkisel yapısı göz önünde bulundurularak hazırlanmıştır. Öğrencilerin daha çok bilgi edinimi yerine matematiksel bilgiye ulaşmayı sağlayan becerilere sahip olmalarını, edindikleri bilgiler arasındaki ilişkileri sorgulayarak eski bilgileri ile yeni bilgilerini bir bütün olarak yapılandırabilmelerini ön planda tutan programda sadece işlemsel bilgiyi ve performansı destekleyen içerikler mümkün olduğunca sınırlı tutulmuştur. Öğrencilerin dil ve sembolizmi etkin kullanarak problem çözmesi, varsayım, genelleme, doğrulama gibi matematiksel düşünmenin önemli bileşenlerine programın bütüncül yaklaşımı ile uyumlu bir şekilde yer verilmiştir. Bunun yanı sıra programda öğrencilerin bireysel ve grup içi sorumluluk alması teşvik edilerek öğrenmeye ilişkin eğilimlerinin ve sosyal-duygusal öğrenme becerilerinin geliştirilmesi hedeflenmiştir. İçerik, bu hedefler bağlamında hem disiplinler arası hem de beceriler arası ilişkiler kurularak mümkün olduğunca gerçek yaşam gereksinimleri çerçevesinde yapılandırılmıştır. Öğrenme-öğretme uygulamalarında öğrenme kanıtlarını belirlemek için ölçme ve değerlendirme araçlarının sadece sonuç odaklı değil süreç odaklı olarak da kullanıldığı bir program yaklaşımı benimsenmiştir."
"Ortaöğretim Matematik Dersi Öğretim Programı, matematik alan becerileri ve kavramsal becerilerle bu becerilerin öncüsü niteliğindeki eğilimler esas alınarak hazırlanmıştır. Türkiye Yüzyılı Maarif Modeli’nde matematik alan becerileri, önemli oranda kavramsal beceriler üzerine inşa edilmiştir. Kavramsal becerilerin karşılayamadığı durum veya süreçler için de matematiğe özgü alan becerileri tanımlanmıştır. Bu anlamda kavramsal becerilerle matematik alan becerilerinin sıkı bir etkileşimi söz konusu olup bu iki beceri türünün birbirinin gelişimini destekleyen yapısı ön plandadır."
"Ortaöğretim Matematik Dersi Öğretim Programı’nın hedeflediği beceriler ve içerik çerçevesi ile uyumlu bir biçimde matematik öğrenme ve öğretme sürecinin doğal bir bileşeni olarak değerlendirilmeli, Matematik öğretme süreci ve öğrencilere sunulan matematik öğrenme ortam ve fırsatları, okuryazarlık becerilerini destekleyecek bir yapıda olmalı ve Sosyal-duygusal öğrenme becerilerini destekler biçimde planlanmalıdır."
"Disiplinler arası ilişkiler başta fen bilimleri olmak üzere farklı disiplin ve alanların matematiği kullandığı bağlam ve problemlere vurgu yapmakta olup programın temaları bu başlık altında farklı disiplinlerle ilişkilendirilmiştir. Böylelikle matematik öğrenme ve öğretme sürecinin disiplinler arası bağlam, problem ve etkileşimle daha nitelikli, faydalı ve ilgi çekici bir hâle getirilmesi amaçlanmıştır."
"Öğrenme çıktıları; temanın sonunda öğrencinin ulaşması beklenen, alana ilişkin kavram, yöntem ve işlem bilgileri ile becerileri bir arada sunan öğretimsel amaçlar olarak düşünülebilir. Öğrenme çıktıları kavramsal beceriler ve matematik alan becerilerinin ortaya koyduğu eylemlerin yanı sıra bu becerileri oluşturan “süreç bileşenleri”nin de rehberliğinde hazırlanmıştır."
"Matematik dersi öğretim programları, ilköğretim ve ortaöğretim düzeyinde bilgi ve beceriler bağlamında bütüncül ve tutarlı bir yaklaşımla oluşturulmuştur. Temaların içerik çerçevesinde 'genelleme', 'anahtar kavramlar', 'sembol ve gösterimler' bileşenleri üzerinde durulmuştur. Program tasarımında her bir tema ile ilgili sınırlı sayıda ve tema çerçevesinde belli oranda gerçekleştirilebilir genellemelere yer verilmiştir. Bazı genellemeler bir temanın kapsamı ile sınırlıyken bazıları ancak benzer temalar etrafında 2-3 yıl boyunca sunulacak öğretim faaliyetlerinin bir ürünüdür. Her bir temada ayrı ayrı listelenen anahtar kavramlar, temanın kapsamı hakkında bilgi vermektedir. Temaların ilişkisel yapısına bağlı olarak bazı anahtar kavramlar, farklı sınıf seviyelerinde birden çok temada yer alabilmektedir. İçerik çerçevesinin son bileşeni olan “sembol ve gösterimler” hem öğretmenler hem de farklı içerik geliştiriciler için ortak bir dil oluşturmaktadır. "
"Ortaöğretim Matematik Dersi Öğretim Programı’nda öğrencilerin öğrenmelerini destekleyecek ve sistematik olarak öğrencilere geri bildirim verilebilmesini sağlayacak bir ölçme ve değerlendirme yaklaşımı benimsenmiştir. Ortaöğretim Matematik Dersi Öğretim Programı’nda tamamlayıcı ölçme araçları kullanılarak öğrencilere bilgi düzeyleri, eksiklikleri veya kavram yanılgıları hakkında dönütler sağlanması hedeflenmiştir. Ölçme ve değerlendirme faaliyetlerine yönelik önerilen tüm ölçme ve değerlendirme araçları "öğrenme kanıtları" bölümünde listelenmiştir."
"Programda öğrencilerin hazır bulunuşluklarının dikkate alınarak hareket edilmesi, öğrenme ve öğretme sürecinin başında “ön değerlendirme” yapılması önemsenmektedir. Ayrıca hem öğrencilerin ön bilgileriyle yeni öğrenmeleri arasında bağlantı kurulması hem de öğrenilenlerin günlük hayatla ilişkilendirilmesi amacıyla öğrenmeler arasında “köprü kurulması” beklenmektedir."
"Öğrencilerin ulaşması beklenen bilgi ve beceriler aynı olsa da her öğrencinin ilerleme hızı ve süreçte ihtiyaç duyduğu bilgi ve beceriler bir diğerine göre farklı olduğundan bu durum Ortaöğretim Matematik Dersi Öğretim Programı’nda “farklılaştırma” bağlamında ele alınarak, 'zenginleştirme' ve 'destekleme' faaliyetleri öğretmen tarafından bireysel farklılıklara duyarlı bir biçimde, kapsayıcı bir anlayışla gerçekleştirmesiyle 'her öğrencinin matematiği öğrenebileceği' amaçlanmıştır."
Ortaöğretim Matematik Dersi Öğretim Programı ünite ve konu kavramı yerine çeşitli "temalar" etrafında çerçevelenrek sunulmuştur. Bu kapsamda 9.sınıfta 7 tema, 10.sınıfta 7 tema, 11. sınıfta 3 tema, 12.sınıfta 5 tema olacak şekilde hazırlanmıştır.
Hazırlık sınıfı bulunan okullarda matematik öğretim programında "Nicelikler ve değişimler, mantıksal çıkarım, algoritma ve bilişim, geometrik şekiller, istatistiksel araştırma süreci" temalarına yer verilmiştir. Bu sınıf düzeyinde yüzdelik olarak en fazla ağırlık, "geometrik şekiller %30 ve algoritma ve bilişim %24" temasına verilmiştir.
9.sınıf matematik öğretim programında "sayılar, nicelikler ve değişimler, geometrik şekiller, eşlik ve benzerlik, algoritma ve bilişim, istatistiksel araştırma süreci veriden olasılığa" temaları yanında, okul düzeyine göre planlamanın yapılacağı %5 lik bir tema oluşturmaya da izin verilmiştir. 9.sınıf düzeyinde yüzdelik olarak en fazla ağırlık, "sayılar %17, nicelikler %17, eşlik ve benzerlik %17 temasına verilmiştir.
10.sınıf matematik öğretim programında "geometrik şekiller, istatistiksel araştırma süreci, sayılar, nicelikler ve değişimler, sayma- algoritma ve
bilişim, analitik inceleme ve veriden olasılığa" temaları
yanında, okul düzeyine göre planlamanın yapılacağı %5 lik bir tema
oluşturmaya da izin verilmiştir. 10.sınıf düzeyinde yüzdelik olarak en fazla ağırlık, "nicelikler ve değişimler" %25 temasına verilmiştir.
11.sınıf matematik öğretim programında "istatistiksel araştırma süreci, geometrik şekiller, nicelikler ve değişimler" temaları
yanında, okul düzeyine göre planlamanın yapılacağı %5 lik bir tema
oluşturmaya da izin verilmiştir. 11.sınıf düzeyinde yüzdelik olarak en
fazla ağırlık, "nicelikler ve değişimler" %51 (17*3=51)" temasına verilmiştir.
12.sınıf matematik öğretim programında "nicelikler ve değişimler, geometrik şekiller, geometrik cisimler, değişimin matematiği ve hazır veriler üzerinde çalışma" temaları
yanında, okul düzeyine göre planlamanın yapılacağı %5 lik bir tema
oluşturmaya da izin verilmiştir. 12.sınıf düzeyinde yüzdelik olarak en
fazla ağırlık, "değişimin matematiği" %39 (13*3=39)" temasına verilmiştir.
Tema öğrenme çıktıları ve süreç bileşenleri
MAT.H.1.1. Doğrusal ilişkiler içeren problemlerin çözümlerinde matematiksel araç ve teknolojilerden yararlanabilme
MAT.H.2.1. Mantıksal çıkarım gerektiren problemleri çözebilme
MAT.H.3.1. Sonlu sayı örüntülerine yönelik tümevarımsal akıl yürütebilme
MAT.H.3.2. Şifreli metinleri çözebilmek için tümevarımsal akıl yürütebilme
MAT.H.3.3. Şifreli metinler oluşturabilmek için analojik akıl yürütebilme
MAT.H.4.1. Farklı geometrik kavram ve şekillerin inşa çalışmalarında matematiksel araç ve teknolojilerden yararlanabilme
MAT.H.4.2. Matematiksel araç ve teknolojilerden yararlanılarak inşa edilen bazı özel dörtgenlerin (yamuk, paralelkenar, dikdörtgen, eşkenar dörtgen, kare) özellikleri ile ilgili çıkarım yapabilme
MAT.H.4.3. Fraktalları çözümleyebilme
MAT.H.4.4.Geometrik şekiller kullanılarak oluşturulan süslemeleri çözümleyebilme
MAT.H.4.5. Geometrik şekillerden kaplamalar sentezleyebilme
MAT.H.5.1. Başkaları tarafından oluşturulan istatistiksel sonuç veya yorumları tartışabilme