Net Fikir » süreklilik » Bir fonksiyonun bir noktada sürekliliği
Bir fonksiyonun bir noktada sürekliliği
Etiketler :
fonksiyon
limit
matematik
süreklilik
Süreklilik matematik ve bir çok bilim dalında uygulamaları olan önemli bir kavramdır. Bir
fonksiyonun herhangi bir noktada sürekli olması için öncelikle o
noktada tanımlı bir fonksiyon olması gerekir. Tanımsız olan bir noktada
süreklilik aranmaz. Tanımlı olarak verilen bir noktada fonksiyonun
sürekliliği araştırılırken fonksiyonun verilen x=a noktasında limitinin
olması gereklidir. Yani fonksionun o noktadaki sağdan ve soldan limit
değerleri birbirine eşit olmalıdır. Fonksiyonun verilen x=a noktasındaki
limit değeri fonksiyonun o noktadaki görüntüsüne yani f(a) değerine de
eşit olmalıdır. Bu şartlar sağlandığında "fonksiyon x=a noktasında
süreklidir" denir (continous function). Sürekli olmayan fonksiyon o
noktada süreksiz olur.
Süreklilik kavramı bir fonksiyonun tanım kümesine ait bir x0 noktası için f (x0) noktası ve x0
noktasının sağ ve sol tarafındaki değerler (noktanın sağ ve sol komşulukları) hakkında bilgi verir. Bir x0∈R noktası için A kümesinin bir ε>0 reel sayısı olmak üzere x0 noktasının herhangi bir ε komşuluğunda (x0−ε , x0+ ε) ⊆ A özelliğine sahip bir alt kümesinde tanımlı bir f : A → R fonksiyonu için, x bağımsız değişkeni x0 reel sayısına yaklaşırsa f(x) değerleri
de f(x0) değerine yaklaşmış olur. Bu şekildeki fonksiyonların
sağdan ve soldan yaklaşma değerleri birbirine eşit ise fonksiyonun bu noktada
limiti vardır. Bu limit değeri, fonksiyonun x0 noktasındaki f(x0)
değerine eşit ise bu fonksiyon bu noktada sürekli olur.
Süreklilik
tanımının haricinde bazı f:A→R parçalı fonksiyonları için x bağımsız
değişkeni x0 reel
sayısına sağdan veya soldan yaklaştığında f(x) değerleri f(x0) değerine yaklaşmaz. Bu şekildeki fonksiyonlar x0 noktasında sürekli olmaz yani fonksiyon x0 noktasında
süreksizdir. Bir fonksiyon bütün Reel sayılar kümesinde süreklilik
tanımını sağlıyorsa fonksiyona sürekli fonksiyon denir. Polinom
fonksiyonlar her noktada sürekli fonksiyonlara örnek olarak verilebilir.
Fonksiyonun sürekliliğini epsilon-delta tanımına göre gösterebilmek için verilen koşulun her durumda sağlandığı δ (delta) bir değerini ε (epsilon) cinsinden ifade edebilmemiz gerekir. Aşağıda buna bir örnek verilmiştir. Buradaki tanımın genel limit tanımından farkı; fonksiyonun o noktadaki (x=a noktasındaki) f(a değerinin limit tanımına yerleştirilmesidir.

Bu yazıyı aşağıdaki bağlantılar yardımıyla sosyal ağlarda paylaşabilirsiniz. E-Posta ile arkadaşlarınıza yollayabilirsiniz...
|
Takip et: @kpancar |

İlginizi Çekecek Diğer Yazılarımız
Aşağıdaki Yazılar İlginizi Çekebilir!!!
15.04.2014 - 0 YorumANKARA ÜNİVERSİTESİ 2013-2014 EĞİTİM-ÖĞRETİM YILI BAHAR YARIYILI ARA SINAVI İLAHİYAT LİSANS TAMAMLAMA UZAKTAN EĞİTİM PROGRAMI (YARIYILLIK) 12-13 NİSAN 2014 CUMARTESİ ÖĞLEDEN SONRA - PAZAR ÖĞLEDEN SONRA OTURUMLARI DERSLER: TEFSİR METİNLERİ2, HADİS…
13.07.2012 - 0 Yorum Matematik öğretmeni olmak için Eğitim fakültelerinden Matematik Öğretmenliği bölümü veya ilköğretim Matematik Öğretmenliği bölümünü okumanız / Fen Edebiyat Fakültelerinden Matematik bölümünü okuyarak Pedegojik Formasyon belgesi almanız…
04.03.2013 - 0 Yorum İki arkadaş oturmuş yemek yiyordu. Birisinin beş, diğerinin üç ekmeği vardı. Yemeğe daha yeni başlamışlardı ki oradan geçmekte olan birini daha gördüler ve O kişiyi de yemeğe çağırdılar. Üç kişi sekiz ekmeği beraber yedikten sonra, üçüncü adam,…
14.02.2014 - 0 Yorum"İnsan vav şeklinde doğar, bir ara doğrulunca kendini elif sanır.İnsan iki büklüm yaşar, oysa en doğru olduğu gün ölmüştür.Kulluğun manası vavdadır, elif uluhiyetin ve ehadiyetin simgesidir.O yüzden Lafz-ı ilahi elifle başlar. Elif kainatın…
08.05.2019 - 0 Yorum1. Talebenin birinci vazifesi, kalbini çirkin ve rezil sıfatlardan temizlemektir; zira ilim, kalbin ibadeti, namazın yaklaştıran bir sıfattır. Nasıl ki âzaların vazifesi olan namaz, ancak zâhirî necaset ve taharetten temiz olmakla sahih ve câiz…
29.05.2013 - 3 YorumAnkara İlitam 1.sınıf 2.Dönem Ders Kitapları Burada yer alan ders kitapları, 2013-2014 Eğitim-Öğretim Yılı içindir. Burada yer alan bazı ders kitaplarının ünite ve konu başlıkları, iligili ders döneminden sonra değişmiş veya yeni bilgiler ilave…
04.01.2010 - 0 Yorum Cahit Arf; (D. 11 Ekim 1910, Kayalar / Selanik – Ö. 26 Aralık 1997, İstanbul) dünya çapında ünlü bir matematikçi ve fizikçidir. Henüz iki yaşında iken, Selanik’in Balkan Savaşı sırasında Yunan ordusunun denetimine girmesi üzerine, ailesi İstanbul’a…
05.03.2023 - 0 YorumÖklid, MÖ 300 yılları civarında İskenderiye'de yaşadığı düşünülen Antik Çağ matematikçisidir. Elemanlar adlı bu kitabında zamanının bilinen tüm matematiğini yalnızca beş belit ve beş genel kavramdan başlayarak sistematik bir şekilde yeniden…
Matematik Konularından Seçmeler
matematik
(260)
geometri
(124)
ÖSYM Sınavları
(50)
üçgen
(49)
trigonometri
(39)
çember
(31)
sayılar
(30)
fonksiyon
(28)
alan formülleri
(25)
türev
(23)
analitik geometri
(19)
denklem
(18)
dörtgenler
(18)
limit
(16)
belirli integral
(13)
katı cisimler
(11)
koordinat sistemi
(11)
fraktal geometri
(7)
materyal geliştirme
(7)
asal sayılar
(4)
elips
(3)
tümevarım
(3)
binom açılımı
(2)
hiperbol
(2)
Fayda vermeyen ilimden Allah'a sığınırım. “Allah'ım; bana öğrettiklerinle beni faydalandır, bana fayda sağlayacak ilimleri öğret ve ilmimi ziyadeleştir."
İlim; amel etmek ve başkalarıyla paylaşmak içindir. Niyetimiz hayır, akıbetimiz hayır olur inşallah. Dua eder, dualarınızı beklerim...